
Euler

Welcome
Welcome to the Euler documentation pages!

Here you will find the white paper, guides on how to use the app, and all the developer materials needed to
start building on top of Euler.

Don't be shy, if there is anything missing or unclear, please drop in to the community server where
you can have all of your questions answered.

Discord

https://discord.gg/CdG97VSYGk

Getting Started

Introduction
A brief introduction to Euler

Euler is a non-custodial permissionless lending protocol on Ethereum that helps users to earn interest on
their crypto assets or hedge against volatile markets without the need for a trusted third-party.

Euler protocol features a number of innovations not seen before in DeFi, including permissionless lending
markets, reactive interest rates, protected collateral, MEV-resistant liquidations, multi-collateral stability
pools, and much more. For more information, read the .White Paper

White Paper
Find out how Euler works and how it differs from other popular lending protocols

Abstract

Here, we present Euler: a permissionless lending protocol custom-built to help users lend and borrow digital
assets. The purpose of this white paper is to describe how Euler works at a high level and highlight new
features and innovations that help to set it apart from other popular lending protocols, like Compound and
Aave.

Introduction

Euler comprises a set of smart contracts deployed on the Ethereum blockchain that can be openly accessed
by anyone with an internet connection. Euler is managed by holders of a protocol native governance token
called Euler Governance Token (EUL). Euler is entirely non-custodial; users are responsible for managing
their own funds.

A convenient and user-friendly front-end to for the Euler smart contracts is hosted at .
However, users are free to access the protocol in whatever format they wish; a popular alternative can be
found at .

https://app.euler.finance

https://instadapp.io/

Permissionless Listing

Euler lets its users determine which assets are listed. To enable this functionality, Euler uses Uniswap v3 as
a core dependency . Any asset that has a WETH pair on Uniswap v3 can be added as a lending market
on Euler .

(4)
(5)

Asset Tiers

Permissionless listing is much riskier on decentralised lending protocols than on other DeFi protocols, like
decentralised exchanges, because of the potential for risk to spill over from one pool to another in quick
succession. For example, if a collateral asset suddenly decreases in price, and subsequent liquidations fail
to repay borrowers' debts sufficiently, then the pools of multiple different types of assets can be left with bad
debts.

To counter these challenges, Euler uses risk-based asset tiers to protect the protocol and its users:

Isolation-tier assets are available for ordinary lending and borrowing, but they cannot be used as collateral
to borrow other assets, and they can only be borrowed in isolation. What this means is that they cannot be
borrowed alongside other assets using the same pool of collateral. For example, if a user has USDC and
DAI as collateral, and they want to borrow isolation-tier asset ABC, then they can only borrow ABC. If they
later want to borrow another token, XYZ, then they can only do so using a separate account on Euler.

Cross-tier assets are available for ordinary lending and borrowing, and cannot be used as collateral to

https://app.euler.finance/
https://instadapp.io/

borrow other assets, but they can be borrowed alongside other assets. For example, if a user has USDC
and DAI as collateral, and they want to borrow cross-tier assets ABC and XYZ, then they can do so from a
single account on Euler.

Collateral-tier assets are available for ordinary lending and borrowing, cross-borrowing, and they can be
used as collateral. For example, a user can deposit collateral assets DAI and USDC, and use them to
borrow collateral assets UNI and LINK, all from a single account.

EUL holders can vote to liberate assets from the isolation-tier and promote them to the cross-tier or
collateral-tier through governance mechanisms. Promoting assets up the tiers increases capital efficiency on
Euler because it allows lenders and borrowers to use capital more freely, but it may also expose protocol
users to increased risk. It is therefore in EUL holders' interests to balance these concerns.

Lending and Borrowing

When lenders deposit into a liquidity pool on Euler, they receive interest-bearing ERC20 eTokens in return,
which can be redeemed for their share of the underlying assets in the pool at any time, as long as there are
unborrowed tokens in the pool (similar to Compound's). Borrowers take liquidity out of a pool and
return it with interest. Thus, the total assets in the pool grows through time. In this way, lenders earn interest
on the assets they supply, because their eTokens can be redeemed for an increasing amount of the
underlying asset over time.

cTokens

Tokenised Debts

Similarly to Aave's , Euler also tokenises debts on the protocol with ERC20-compliant interfaces
known as dTokens. The dToken interface allows the construction of positions without needing to interact
with underlying assets, and can be used to create derivative products that include debt obligations.

debt tokens

Rather than providing non-standard methods to transfer debts, Euler uses the regular transfer/approve
ERC20 methods. However, the permissioning logic is reversed: rather than being able to send tokens to
anyone, but requiring approval to take them, dTokens can be taken by anyone, but require approval to
accept them. This also prevents users from "burning" their dTokens. For example, the zero address has no
way of approving an in-bound transfer of dTokens.

Borrowers pay interest on their loans in terms of the underlying asset. The interest accrued depends on an
algorithmically determined interest rate for each asset. A portion of the interest accrued is held in reserves to
cover the accumulation of bad debts on the protocol.

Protected Collateral

On Compound and Aave, collateral deposited to the protocol is always made available for lending.
Optionally, Euler allows collateral to be deposited, but not made available for lending. Such collateral is
'protected'. It earns a user no interest, but is free from the risks of borrowers defaulting, can always be
withdrawn instantly, and helps protect against borrowers using tokens to influence governance decisions
(see Maker governance issue) or take short positions.(6)

Defer Liquidity

Normally, an account's liquidity is checked immediately after performing an operation that could fail due to

https://compound.finance/docs/ctokens
https://docs.aave.com/developers/tokens/debttoken

insufficient collateral. For example, taking out a borrow, withdrawing collateral, or exiting a market could
cause a transaction to be reverted due to a collateral violation.

However, Euler has a feature that allows users to defer their liquidity checks. Many operations can be
performed, and the liquidity is checked only once at the very end. For example, without deferring liquidity
checks, a user must first deposit collateral before issuing a borrow. However, if done in the same transaction,
deferring the liquidity check will allow the user to do this in any order.

Feeless Flash Loans

Unlike Aave, Euler doesn't have a native concept of flash loans. Instead, users can defer their liquidity
check, make an uncollateralised borrow, perform whatever operation they like, and then repay the borrow.
This can be used to rebalance positions, build-up complex positions, take advantage of external arbitrage
opportunities, and more.

Because Euler only charges fees according to the time value of money, and from the blockchain's
perspective flash loans are held for a duration of 0 seconds, they are entirely free on Euler (ignoring gas
costs). We believe that flash loan fees are ultimately in a race to the bottom that will be accelerated by
advances like flash minting. The ecosystem benefits gained from simple and free flash loans outweigh the
relatively modest benefit from flash loan fees.

Risk-adjusted Borrowing Capacity

Like other lending protocols, Euler requires users to ensure that the value of their collateral remains higher
than the value of their liabilities (except during the intermediate period when liquidity checks have been
deferred). Over-collateralisation is encouraged by limiting how much borrowers can take out as a loan in the
first place.

Compound achieves this in a one-sided way by using collateral factors to adjust down the value of a
borrower's collateral assets when deciding how much they can borrow. This gives rise to a 'risk-adjusted
collateral value' that helps to create a buffer that can be drawn upon by liquidators in the event that the value
of a borrower's assets and liabilities changes over time. One of the problems with this approach is that it only
adjusts for the risks associated with a borrower's collateral assets decreasing in value. There may be an
asymmetric risk, however, of the borrower's liabilities increasing in value. This risk is not factored into the
collateral factors.

On Euler, we therefore use a two-sided approach where we also adjust up the market value of a borrower's
liabilities to arrive at a 'risk-adjusted liability value'. This approach improves capital efficiency on the protocol
because it allows Euler to factor in the asset-specific risks of both downside and upside price movements.
These risks are encapsulated in asset-specific collateral factors (as on Compound) and borrow factors (new
to Euler). Ultimately, this approach means that the liquidation threshold of every borrower is tailored to the
specific risk profiles associated with the assets they are borrowing and using as collateral.

To give an example, suppose a user has $1,000 worth of USDC, and wants to borrow UNI. How much can

they borrow? If USDC has a collateral factor of 0.9, and UNI has a borrow factor of 0.7, then a user can
borrow up to $1,000 * 0.9 * 0.7 = $630 worth of UNI. At this level of borrowing, the risk-adjusted value of their
collateral is $1,000 * 0.9 = $900, and the risk-adjusted value of their liabilities is $630 / 0.7 = $900. If UNI
increases in price, then the risk-adjusted value of their liabilities will also increase to >$900, and then they
will be eligible for liquidation. The buffer allowing for liquidation is $1,000 - $630 = $370.

Decentralised Price Oracles

To be able to calculate whether a loan is over-collateralised or not, Euler needs to monitor the value of
users' assets. On Compound, Maker, and Aave, various systems are used to get prices from off-chain
sources and put them on-chain so that they can be accessed by the relevant smart contracts.

This approach is unsuitable for Euler's purposes because it requires centralised intervention whenever a
new lending market needs to be created. Euler therefore relies on Uniswap v3's decentralised time-
weighted average price (TWAP) oracles to assess the solvency of users . The reference asset used to
normalise prices on Euler is Wrapped Ether (WETH), which is the most common base pair on Uniswap .

(4)
(5)

TWAP

Uniswap TWAP is calculated using the geometric mean price of an asset over some interval of time. TWAP
in general is both a smoothed and lagging indicator of the trade price: a TWAP over a short interval is a less
smooth function, but more up-to-date, whilst a TWAP over a long interval is a smoother function, but less up-
to-date. TWAP is ideal for Euler's purposes for several reasons.

First, TWAP is resistant to price manipulation attacks. It cannot be manipulated within a transaction or block
(for example, with flash loans or flash bots) because it is calculated using historic data. It is also expensive
to manipulate using large market orders because the manipulated price must be maintained for some period
of time relative to the TWAP time interval. During this time, other users can take advantage of the
manipulated price with arbitrage, which will cause it to revert back to the broader market price. Arbitrage is
especially practical on the blockchain because arbitrageurs have access to large amounts of capital
(including from flash loans) and the atomic nature of transactions means that arbitrage transactions have a
low execution risk. For these reasons, manipulating the price on a single decentralised exchange usually
requires more widespread manipulation of all on-chain exchanges simultaneously, although even this can't
prevent the (less practical but still possible) arbitrage between on and off-chain exchanges.

Second, the smooth nature of TWAP helps to remove the impact of price shocks on borrowers. In the event
of a large trade, the current price on Uniswap can be moved significantly. Usually, arbitrage bots will quickly
converge this to the broader market value, so the maximum deviation of the TWAP will only be a fraction of
the temporary price movement. This prevents some unnecessary liquidations and loans that may quickly
become undercollateralised.

Third, instead of instantly jumping between two price levels, TWAPs change continuously, second-by-
second. This property is used by Euler's liquidation process to implement Dutch auctions that reduce the
value captured by miners and front-running bots.

Time Interval

One of the challenges in using TWAP is determining the right interval over which it should be calculated for

a given asset. The trade-offs involved with shorter (longer) intervals may sometimes need to be taken into
consideration and altered for specific assets. Euler therefore allows the default time interval to be updated
by governance if EUL holders deem it necessary.

Liquidations

A borrower is considered to be in violation on Euler when the value of their risk-adjusted liabilities exceeds
the value of their risk-adjusted collateral. A borrower that has just become in violation still has enough
collateral to repay their loan, but is adjudged to be at risk of defaulting on their loan. Consequently, they may
be liquidated in order to limit the potential for them to default.

MEV-resistance

On Compound and Aave, liquidations are incentivised by offering up a borrower's collateral to liquidators at
a fixed percentage discount, which typically ranges between 5-10%. One of the issues with this strategy is
that would-be liquidators often have no choice but to engage in priority gas auctions (PGA) for profitable
liquidations, which exposes the liquidation bonus as so-called miner extractable value (MEV) . Another
issue with this approach is that a fixed discount can be punitive for large liquidations, and therefore
discourage large borrowers, whilst being insufficient to cover costs and incentivise smaller liquidations.

(7)

To remedy these issues, Euler uses a different approach. Rather than a fixed discount percentage, we allow
the discount to rise as a function of how under-water a position is. This turns a one-shot opportunity, where
liquidators have no option but to engage in a PGA, into a type of Dutch auction. As the discount slowly
increases, each would-be liquidator must decide whether or not to bid for a liquidation at the current
discount on offer. Liquidator A might be profitable at 4%, but liquidator B might run a more efficient operation
and be able to jump in sooner at 3.5%. The Dutch auction is aided by the TWAP oracles used on Euler
because a shock to the price does not bring with it a singular point at which every liquidator becomes
profitable all at once. Instead, the price moves more smoothly over time leading to a continuum of
opportunities to liquidate, which further helps to limit PGAs. Overall, this process should help to drive the
discount price towards the marginal operating cost of liquidating a borrower.

However, by itself, this process does not prevent MEV because miners and front-runners can still steal a
liquidator's transaction. To limit this form of MEV, we allow liquidity providers on Euler to make themselves
eligible for a "discount booster", which allows them to become profitable in the Dutch auction before miners
and front-runners (who do not have the booster).

Soft Liquidations

The fraction of a borrower's debt that can be paid off by liquidators in one go is referred to by Compound as
the 'close factor.' On both Compound and Aave, the close factor is currently fixed at 0.5, meaning liquidators
can pay off up to half a borrower's loan in one go, regardless of how underwater their position is. This
approach has a couple of potential drawbacks.

First, allowing liquidators to liquidate half a loan could be considered excessive if a smaller liquidation
would have been sufficient to bring the borrower back to health. Larger borrowers are likely to be put off by
such a process. Second, a large fixed discount can sometimes drive a borrower closer to insolvency and
disincentivise them from repaying their loans (see).(8)

On Euler, we therefore use a dynamic close factor to try to `soft liquidate' borrowers. Specifically, we allow

liquidators to repay up to the amount needed to bring a violator back out of violation (plus an additional
safety factor). This means that borrowers who are only slightly in violation will often have much less than
half their debts repaid during a liquidation, whilst borrowers who are heavily in violation will often have
much more than half their debts repaid during a liquidation (their whole position might be closed in some
circumstances).

Reserves

In rare circumstances, the value of a borrower's collateral might become less than the value of their
liabilities. In this situation, the borrower is said to be 'insolvent.' Insolvent borrowers will typically be
liquidated repeatedly until they have little to no collateral left. Any leftover liabilities after liquidations have
stopped can be considered 'bad debt' that we can assume will never be repaid. If bad debt accumulates on
the protocol, it increases the chance that lenders might all rush at once to withdraw their funds (to avoid
becoming the bearer of the bad debt). This phenomenon is known as `run on the bank.'

To reduce this risk, Euler follows Compound by allowing a portion of the interest paid by borrowers in each
market to accumulate into a reserve. The idea behind this is to allow the reserves to act as a lender of last
resort in the event of a run on the bank. Providing that reserves accumulate at a faster pace than bad debt,
lenders do not need to worry about being able to withdraw their funds. Euler reserves operate similar to
those on Compound, except that Euler reserves are tracked in eToken units, rather than underlying units,
which means that Euler reserves earn interest automatically whereas Compound reserves do not.

The proportion of interest paid into the reserves is called the `reserve factor' and it is a parameter specific to
each lending market. There are trade-offs to consider when setting the reserve factor. A reserve factor of
zero would mean no reserves accrue, which could stifle lending because of the bad debt issue.
Nevertheless, a high reserve factor would mean a large portion of interest is diverted away from lenders,
which could also stifle lending as lenders seek a better rate elsewhere. Thus, EUL holders may wish to use
governance to select a reserve factor that balances these trade-offs for each type of asset.

Liquidation Surcharge

During a liquidation, the liquidator is required to provide a slightly larger amount of the borrowed asset than
is being repaid on behalf of the violator. This extra amount is contributed to the reserves for the borrowed
asset as a fee. The base liquidation discount starts at the level of this fee, so it is ultimately paid by the
violator.

As a result, more volatile assets, which generally trigger more liquidations, will tend to accrue reserves at a
faster pace than less volatile assets, helping to protect lenders of those assets. Additionally, this fee ensures
that 'self-liquidating' is always net-negative, which adds a profitability threshold that some undesirable
manipulation strategies are unlikely to meet.

Interest Rates

Both Compound and Aave use static linear (or piecewise linear) interest rate models to guide the cost of
borrowing on their protocols. Broadly speaking, as demand for borrowing from the pool increases or supply
decreases, interest rates go up, and when supply increases or the demand for borrowing decreases, interest
rates go down.

Static models work well if they are appropriately parameterised ahead of time, but can be problematic when

parametrised incorrectly. For example, if the slope of the static linear function is too shallow, it can lead to
the cost of borrowing being underpriced, with lenders unable to withdraw their assets because a pool has
become over-utilised. On the other hand, if the slope of the static linear function is too steep, it can lead to
the cost of borrowing being too expensive, which can stifle borrowing and lead to low capital efficiency.

Reactive Interest Rates

To avoid the problem of having to choose the right parameters for every lending market, Euler uses control
theory to help autonomously guide the cost of borrowing towards a level that maximises capital efficiency on
the protocol. Specifically, we use a PID controller to amplify (dampen) the rate of change in interest rates
when utilisation is above (below) a target level of utilisation. This gives rise to reactive interest rates that
adapt to market conditions for the underlying asset in real-time without the need for ongoing governance
intervention. A similar approach has also recently been described by the Delphi Labs team .(9)

Compound Interest

Compound interest is accrued on Euler on a per-second basis. This differs from other lending protocols,
where interest is typically accrued on a per-block basis. A per-second basis is generally expected to perform
more predictably in the long-run, even if upgrades to Ethereum lead to changes in the average time between
blocks.

Gas Optimisations

Euler’s smart contracts minimise the amount of storage used, implement a module system to reduce the
amount of cross-contract calls, and have had a number of other gas usage optimisations applied. This
makes the protocol cheaper on most operations than other lending protocols.

Transaction Builder

The user interface includes a convenient tool to help users batch up multiple transactions and reduce their
gas costs, which we call a transaction builder. Advanced users can use this feature in conjunction with a
'defer liquidity checks' option provided on the protocol to rebalance loans or perform flash loans.

Sub-accounts

Asset tiers help to isolate risks on Euler, but they open up a new user-experience problem. Specifically, it
would quickly become cumbersome for borrowers to use Euler if they had to send collateral to a new
Ethereum account for each new isolation-tier loan they wanted to take out.

Euler therefore enables every Ethereum account using the protocol to access up to 256 sub-accounts
(including the primary account), which can be used to cost-effectively manage multiple positions at the same
time. A user only needs to approve Euler's access to a token once, and can then deposit into any sub-
account. Additionally, no approvals are required to transfer assets and liabilities between sub-accounts,
which allows users to isolate and segregate their collateral and debts as desired.

Governance

Euler will broadly follow the governance model pioneered by Compound . The protocol will be managed (10)

by holders of a protocol native governance token called Euler Governance Token (EUL). EUL tokens will
represent voting powers of the protocol software. Holders with enough EUL tokens will be able to make a
formal proposal for change on the protocol. Token holders will then be able to vote on the proposal
themselves or delegate their vote shares to a third party. Examples of the kinds of decisions token holders
might vote on include proposals to alter include:

The tier of an asset

Collateral and borrow factors

Price oracle parameters

Reactive interest rate model parameters

Reserve factors

Governance mechanisms themselves

Acknowledgements

With special thanks to , , , , , ,
, Ayana Aspembitova and the team, , Lev Livnev, and .

Shaishav Todi Luke Youngblood Charlie Noyes samczsun Hasu Dave White Rick
Pardoe Delphi Labs Mariano Conti Chainguys

References

1. https://docs.ethhub.io/built-on-ethereum/open-finance/what-is-open-finance/

2. https://compound.finance/documents/Compound.Whitepaper.pdf

3. https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf

4. https://uniswap.org/whitepaper-v3.pdf

5. https://weth.io/

6. https://www.theblockcrypto.com/post/82721/makerdao-issues-warning-after-a-flash-loan-is-used-to-
pass-a-governance-vote

7. https://research.paradigm.xyz/MEV

8. https://docsend.com/view/bwiczmy

9. https://members.delphidigital.io/reports/dynamic-interest-rate-model-based-on-control-theory

10. https://medium.com/compound-finance/compound-governance-5531f524cf68

https://twitter.com/shaishav0x
https://twitter.com/LukeYoungblood
https://twitter.com/_charlienoyes
https://twitter.com/samczsun
https://twitter.com/hasufl
https://twitter.com/_Dave__White_
https://twitter.com/rick_liquity
https://twitter.com/Delphi_Digital
https://twitter.com/nanexcool
https://twitter.com/Chainguys
https://docs.ethhub.io/built-on-ethereum/open-finance/what-is-open-finance/
https://compound.finance/documents/Compound.Whitepaper.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://uniswap.org/whitepaper-v3.pdf
https://weth.io/
https://www.theblockcrypto.com/post/82721/makerdao-issues-warning-after-a-flash-loan-is-used-to-pass-a-governance-vote
https://research.paradigm.xyz/MEV
https://docsend.com/view/bwiczmy
https://members.delphidigital.io/reports/dynamic-interest-rate-model-based-on-control-theory
https://medium.com/compound-finance/compound-governance-5531f524cf68

Quick Links
Quick access to everything you need to know about Euler

Websites
Website
DApp

Governance
****Forum
Off-chain (Snapshot)
On-chain (WithTally)

EUL
Etherscan
CoinMarketCap
CoinGecko
Messari

DEX
Balancer (EUL/WETH)
Uniswap v2 (EUL/WETH)
Uniswap v3 (EUL/WETH)
Uniswap v3 (EUL/USDC)

Social
Twitter
Discord
Telegram
Telegram Announcements

Security
Immunefi Bug Bounty
Report A Bug

Content
Blog
Newsletter

Videos
YouTube

Dashboards
Tokenterminal
DefiLlama
Zerion
DeBank
Ape Board
DeFiYield

https://www.euler.finance/#/
https://app.euler.finance/
https://forum.euler.finance/
https://snapshot.org/#/eulerdao.eth
https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://etherscan.io/token/0xd9fcd98c322942075a5c3860693e9f4f03aae07b
https://coinmarketcap.com/currencies/euler-finance/
https://www.coingecko.com/en/coins/euler
https://messari.io/asset/euler/charts
https://app.balancer.fi/#/pool/0x8fe054748fc5c8ee50ab8860409a4e9e760e13f4000200000000000000000328
https://v2.info.uniswap.org/pair/0xe96c108da71dbdb2aa1056bc55c3a073061a2fa1
https://info.uniswap.org/#/pools/0xb003df4b243f938132e8cadbeb237abc5a889fb4
https://info.uniswap.org/#/pools/0x175cc167a320623c6e7f23a41f99e5bb696e3f34
https://twitter.com/eulerfinance
https://t.co/yqSIrrJfWi?amp=1
https://t.me/eulerfinance_official
https://t.me/eulerfinance
https://immunefi.com/bounty/euler/
mailto:security@euler.xyz
https://blog.euler.finance/
https://newsletter.euler.finance/
https://www.youtube.com/channel/UCoeP9dvbKoL17nqkNnUJBkg
https://www.tokenterminal.com/terminal/projects/euler
https://defillama.com/protocol/euler
https://zerion.io/
https://debank.com/projects/euler
https://apeboard.finance/
https://defiyield.app/dashboard

Dune Analytics
By
By

ShippooorDAO
altooptimo.eth

https://dune.xyz/shippooordao/Euler-Finance-Dashboard
https://dune.com/altooptimo/Euler-Finance

App

Getting Started

Common Errors
Learn about different errors users might encounter from time on the UI and what they
mean

You have a collateral violation

Collateral violation means you're trying to borrow something without having enough collateral in your
account to do so. Make sure you deposit a collateral asset first, like USDC. You can filter collateral assets on
the markets page.

No match, code: NETWORK_ERROR

Please try refreshing the page and make sure you have a stable internet connection and your web3 wallet is
on the correct RPC network (e.g., Goerli Test Network).

No match, code: UNPREDICTABLE_GAS_LIMIT

Try refreshing the page and trying the transaction again. This error also often occurs for other reasons. So if
you keep having this issue, please check your browser’s console log and please report the error that it
shows.

Unknown error

Please try refreshing the page. If you receive the same error message, please check your browser’s log for
errors and create a support ticket with what you find.

Transfer amount exceeds balance, please check you have enough tokens in your wallet and make
sure they are also not deposited into Euler

You don't have enough tokens in your wallet. If using the test, please make sure you have the correct testnet
tokens from the official Euler testnet faucet.

execution reverted: e/too-many-entered-markets

For a given account, you can enter 10 markets max. You should try the transaction with another account or
sub-account.

RPC error

Some RPC providers on the market (i.e.) are not compatibile with Euler simulation
mode. If this error occurs, the user is advised to change the RPC (i.e. by changing the network in Metamask
to default Ethereum network) and refresh the dapp. Having done that, the simulation feature should be
functional again.

Flashbots Protect RPC

https://docs.flashbots.net/flashbots-protect/rpc/quick-start/

If, due to any reason, user wants to use their originally selected RPC to send the transaction, the following
should be done (example described based on Metamask, actions might differ for other wallets):

change the RPC to default Ethereum network

add all the desired transactions to the batch

assure that the simulation is passing without any error

click 'Send txs' button

when Metamask pops up

click on 'New address detected! Click here...' at the top. Then click 'Add a nickname'. Input 'Euler
Exec' as a nickname and click 'Save'

click on 'HEX', scroll down and click 'Copy raw transaction data'

click 'Reject'

disregard the error in the dapp

open Metamask and click 'Send'

select previously added 'Euler Exec' address

leave the asset set to ETH

leave the amount as 0 ETH

paste your clipboard contents into the 'Hex Data' field

change the network to desired

click 'Next' and sign the transaction

How To
Find out how to use the Euler Protocol through the interface at
https://app.euler.finance/

Use the navigation bar on the left side to find guides for all the primary actions and functions on the Euler
dApp.

Most of the functions and actions can be accessed through the Quick Action menu in the top navigation bar
on the platform UI, while several actions will appear as buttons throughout the site for convenience.

If you come across an error while using the Euler dApp, please see the link below for the list of common
errors. If the error persists or is not in the common errors list, please join the community Discord and open a
ticket in the #support-ticket channel above the News and Announcement channels.

Errors

Common Errors

Connect a Wallet
Learn how to connect a wallet in Euler

About

Connecting a web3 wallet is the first step to utilise the Euler platform. Euler integrated Blocknative to enable
users to connect with Formatic, MetaMask, Ledger, Trezor, WalletConnect, and Coinbase.

Step-by-step

1. Click the Connect button at the top right of the page.

2. Select your wallet provider in the Blocknative window.

3. Select your wallet from the list and unlock it.

4. Ensure you have selected the correct wallet, and your network is set to the correct one.

FAQ

What chains/networks does Euler support?
****Ethereum Mainnet and Goerli testnet (replacement for Ropsten).

Deposit
Learn how to deposit assets on Euler and begin earning interest

About

Depositing into Euler allows users to supply assets to borrowers and earn the Supply APY for an asset.
Depositing collateral is also the first step in being able to borrow assets on Euler.

Step-by-step

1. Click the Quick Action button in the navigation bar.

2. From the menu, choose Deposit .

3. Select the sub-account you wish to deposit into and the asset you wish to deposit.

Note: if you have not yet approved Euler to be able to use this asset, you will need to Enable it

first. In some cases you can achieve this with Sign Permit which is a type of gasless approval

(free).

4. If you wish to use the asset as collateral to take out loans, check the Enter market box.

Note: you can only borrow against 'Collateral' tier assets. You will not be able to borrow against
assets listed as 'Cross' or 'Isolated'. Entering the market for these type of assets will make them
available to liquidators during liquidation events, but will not increase your borrowing power.

5. Enter the amount you wish to deposit (or hit Max to send the full available balance in your wallet).

6. Click Deposit . Your transaction will move to the Transaction Builder , which is a kind of

shopping trolley for transactions. From here you have two options:

1. Click Send txs to immediately submit the deposit.

2. Add more transactions by revisiting the Quick Action button. You can then submit them all at

once by clicking Send txs . This approach generally saves gas over submitting multiple

individual transactions.

FAQ

I deposited, but the asset does not show up in my account.
****Make sure the deposit transactions did not fail, otherwise please create a support ticket in .Discord

https://discord.gg/CdG97VSYGk

Withdraw
Learn how to withdraw assets from Euler

About

Users can withdraw assets from Euler at any time, directly to their wallet. Prior to withdraw, users should
make sure debts are sufficiently repaid in order to withdraw their intended amount.

Step-by-step

1. Click on Withdraw in the Quick Action menu and select the Euler sub-account that you want to

withdraw your tokens from and ensure that you have funds deposited.

2. Select the asset you are interested in.

3. Enter the amount you wish to withdraw:

Select Max to withdraw either your full balance or the most that the pool will allow if the pool has

less available liquidity than you deposited.

Select Safe Max to withdraw enough such that your Euler sub-account will result in having a

health score of 1.25.

Select Liquidation to withdraw enough such that your Euler sub-account will end up at health

score 1 (right on the edge of a liquidation).

FAQ

I cannot withdraw my assets.
****Make sure you have enough assets to cover any loans, otherwise please create a support ticket in

.Discord

https://discord.gg/CdG97VSYGk

Borrow
Learn how to borrow assets on Euler

About

Borrowing assets on Euler creates a loan that users can repay at any time. Borrowers pay the Borrow APY
rate to lenders. Note that users must first deposit collateral before they can borrow. All loans are over-
collateralised, which means that users must deposit more value into the protocol than they can borrow.

Step-by-step

1. Select Borrow in the Quick Action menu.

2. Select the Euler sub-account that you want to borrow on.

Ensure that you have sufficient collateral deposited in the sub-account, and the asset is entered into
the market.

3. Select the asset you are interested in.

4. Enter the amount you wish to borrow:

The Max button is representative of Liquidation x 1.5 to give a better UI experience, but we do not

recommend you borrow more than Safe Max (unless it is a self-collateralized loan).

Select Safe Max to borrow enough such that your Euler sub-account will result in having a health

score of 1.25 (not supported for self-collateralized loans).

Select Liquidation to borrow enough such that your Euler sub-account will end up at a health

score of 1 (right on the edge of a liquidation).

FAQ

I've deposited an asset, but cannot borrow.
****Make your transactions were completed successfully. You can only borrow using approved collateral-tier
assets, unless you're borrowing the same asset you've deposited. Make sure your collateral is sufficient for
the amount you're trying to borrow. Otherwise, please create a support ticket in .Discord

How come I can't borrow with an isolated asset?
****Note that isolated and Cross assets cannot be used as collateral, but Cross assets can be borrowed
alongside other assets, while Isolated assets cannot. Euler aims to curb risk by limiting collateral tier assets
to certain tokens with lower risk profiles.

https://discord.gg/CdG97VSYGk

Repay
Learn how to repay borrowed assets on Euler using funds from a wallet or deposits in
Euler

About

Users can repay their borrowed assets using assets in their wallet are existing assets already deposited into
Euler. Users are able to swap assets if they repay using deposited asset that are different from the borrowed
assets.

Step-by-step

1. Ensure that you have sufficient funds in your wallet or sufficient Euler deposits to repay a loan.

2. Select the Euler sub-account that you want to repay the loan on.

3. If repaying the loan using your Wallet Balance, select the liability asset (loaned asset) then the amount
you want to repay.

4. If repaying the loan using Euler deposits, select the liability asset then the amount to repay.

5. Continue by selecting the swapped asset used to repay the loan and the amount.

If necessary, an appropriate swap will be made on an external exchange. Use the gear icon in the
top-right to customise swap parameters.

6. Select Max to repay your full loan (or maximum amount possible based on your wallet balance/Euler

deposits).

7. If a swap is necessary, wait for a quote and click the Swap and Repay button.

FAQ

Can I repay a loan with a different asset?
****Yes, either from the user's wallet or Euler deposits, which will be swapped for the loaned asset and
repaid.

Mint
Learn how to mint assets on Euler for self-collateralised positions

About

Mint is a unique function on Euler that enables users to simulate a recursive borrowing strategy. Mint creates
equal amounts of deposits and debts for the same asset. It is often the starting point for creating a multiplied
long/short position or used for liquidity mining (when lending/borrowing on a particular market is
incentivised).

Example

A user first does a Deposit of $1000 of USDC. They then Mint $5000 USDC. Their account now has a

total of $6000 USDC deposits, and $5000 USDC debts. This gives them a multiplied position, since they
hold more debt than their initial deposit would allow for.

The Mint function mimics what would happen if a user deposited $1000 USDC, then borrowed $900

USDC, then redeposited that $900 USDC, to borrow $810 more USDC, and so on.

Step-by-step

1. Ensure that you have sufficient collateral in the sub-account you are minting to.

2. Select the Euler sub-account that you want to mint from.

3. Select the asset you are interested in.

4. Enter the amount you wish to have upon completion.

Max here is representative of 19x multiplier (right on the edge of a liquidation), and hence we do

not recommend you mint more than safe max.

Select Safe Max to mint enough deposits and debt such that your Euler sub-account will result in

having a multiplier of 15x.

Select 0 or the Burn button to burn a previously minted position (burn removes an equal amount of
deposits and debts from an account).

While entering the amount, observe the Multiplier and Time to Liquidation to make a decision.

FAQ

Can I be liquidated if I use mint?
****Mint creates a multiplied position which poses liquidation risk when Mint an asset different from the
user's collateral. Additionally, the interest rates also present risk of loss as they're variable and dependent
on the market.

Burn
Learn how to burn assets on Euler to remove Mint positions

About

Burn enables users to 'repay' and undo their multiplied positions created by the Mint function by removing
an equal amount of deposits and debts from an account.

Step-by-step

1. Ensure that you have sufficient supply & debt tokens in the sub-account you are burning on.

2. Select the Euler sub-account that you want to burn on.

3. Select the asset you are interested in.

4. Enter the amount you wish to burn:

Select Max to burn all available of selected asset.

While entering the amount, observe the Multiplier to make a decision.

FAQ

Can I use Burn to repay my debts?
****Burn is only used to close leverage positions from Mint and Long functions. Use the Repay

function to close borrow positions.

Sub-Accounts
Learn more about sub-accounts on Euler

About

Sub-accounts enable users to create new accounts without having to create or connect different wallets.
Users can create sub-accounts to isolate positions, for example. Here are the steps to create sub-accounts.

Step-by-step

In the top right navigation, hover over the icon and click on the Create New button, which will

automatically add a new sub-account and simultaneously switch to it.

There is no cost to create sub-accounts.

Part of opening up ourselves to lending on every market means that we have to protect the system
against volatile and potentially malicious tokens. To do this we have categorised assets as isolated,
cross and collateral.

If the asset is isolated, then you can only borrow and lend on one single asset per sub-account.

FAQ

How many sub-accounts can I create?
****Users can create up to 255 sub-accounts (in addition to their Main account, which is sometimes called
sub-account 0).

Can I rename sub-accounts?
****No, sub-accounts cannot be renamed. This is because all the information held about users' accounts is
retrieved from the blockchain, and adding sub-account names to the chain would be expensive.

Transfer
Learn how to transfer assets between sub-accounts on Euler

About

Transfer allows users to move deposited and debt assets between sub-account in Euler. User should ensure
any borrow positions will have enough collateral assets in the related sub-accounts prior to transferring any
assets.

Step-by-step

Transfer ETokens

1. Ensure that you have sufficient deposits in the sub-account you are transferring from.

2. Select the Euler sub-account that you want to transfer from.

3. Select the Euler sub-account that you want to transfer to.

4. Select the asset you are interested in.

5. Enter the amount you wish to transfer:

Select Max to transfer all the selected asset deposits (or maximum amount possible based on your

'from' sub-account positions).

Select Safe Max to transfer enough such that your 'from' Euler sub-account will result in having a

health score of 1.25.

Transfer DTokens

1. Ensure that you have sufficient debt tokens in the sub-account you are transferring from.

2. Select the Euler sub-account that you want to transfer from.

3. Select the Euler sub-account that you want to transfer to.

4. Select the asset you are interested in.

5. Enter the amount you wish to transfer:

Select Max to transfer all the selected asset debt (or maximum amount possible based on your 'to'

sub-account positions).

Select Safe Max to transfer enough such that your 'to' Euler sub-account will result in having a

health score of 1.25 (not supported for self-collateralized loans).

FAQ

Can I transfer multiple assets?
****Yes, you will need to make multiple actions sent to the transaction builder.

Swap
Learn how to swap assets in Euler

About

Swapping assets in Euler enables uses to exchange one deposited asset for another using external
exchanges that have been integrated into the platform (1inch or Uniswap).

Step-by-step

1. Ensure you have sufficient supply tokens in the sub-account you want to swap from.

2. Select the Euler sub-account that you want to swap from.

3. Select the Euler sub-account that you want to swap to.

4. Select the asset you wish to sell.

5. Select the asset you wish to buy.

6. Enter the amount you wish to sell.

Select Safe Max to sell the amount such that your Euler sub-account will result in having a

health score of 1.25.

Select Liquidation to sell the amount such that your Euler sub-account will end up at health

score 1 (right on the edge of a liquidation).

Select Max to sell all the selected asset.

Users can set the slippage to the desired value by clicking the gear icon in the top-right

corner.

7. Wait for a quote and click the Swap button.

FAQ

Can I swap assets from my wallet?
****Currently, users can only swap assets they've deposited.

Short/Long
Learn how to create short or long positions in Euler

About

Short allows users to build a leveraged short position by borrowing and then immediately selling an asset
using external exchange (1inch or Uniswap).

Step-by-step

1. Ensure that you have sufficient collateral in the sub-account you are shorting on.

2. Select the Euler sub-account that you want to short on.

3. Select the asset you wish to short on.

4. Select the asset you wish to use as the collateral.

5. Enter the amount you wish to short:

Select Safe Max to short the amount such that your Euler sub-account will result in having a

health score of 1.25.

Select Liquidation to short the amount such that your Euler sub-account will end up at health

score 1 (right on the edge of a liquidation).

Users can set the slippage to the desired value by clicking the gear icon in the top-right

corner.

6. Wait for a quote and click the Short button.

FAQ

I'm creating a Short/Long position, so why do I see the asset in a Self Collateral and Self Liability
row?
****The asset is sold and redeposited on Euler, which creates the self collateral/liability row, but your
intended position is there.

Protected Collateral
Learn how to protect your collateral assets in Euler

About

Toggling collateral assets on Euler enables users to protect their tokens as collateral without permitting
borrowing. Users may want to do this so that their collateral is purely being used as collateral for their own
borrowed assets, while lowering other risks.

Step-by-step

1. At the desired sub-account page, find the asset under the supply column.

2. Click the toggle button in the Entered column in the Account view to enter/exit market.

Ensure that you have no outstanding borrows on the account that are collateralised by a given
asset.

FAQ

The transaction builder won't let me toggle collateral, it presents a Collateral violation error.
****Toggling collateral will disallow using the asset as collateral, so you won't be able to borrow using the
asset.

Transaction Builder
Learn how to use the transaction builder in Euler

About

The transaction builder lists all the functions and actions that the user generated via the Quick Action menu,
such as deposit, borrow, mint, etc. The transaction builder also enables users to add, remove, rearrange and
edit transactions before approving the final transaction.

Step-by-step

The transaction builder can be expanded out from the right side of the UI by clicking the OPEN button.

Every time you alter your transaction builder, it automatically checks how much gas you will spend and
tries to figure out if there will be any errors.

Transactions are executed in the order you have specified, and the order of the transactions can be re-
arranged in a drag and drop fashion.

You are able to send transactions from different sub-accounts at the same time.

FAQ

An error appeared as I added actions to the transaction builder.
****Check with the and make sure the transaction builder is up-to-date with your actions (i.e.
Swapping/transfer may become outdated if prices/interest rates significantly changed).

Common Errors

https://docs.euler.finance/guides/common-errors

Wrap
Learn how to wrap or unwrap assets in Euler

About

Wrap is a versatile function that allows users to convert between wrapped and unwrapped assets. Two of
the most common use cases are wrapping/unwrapping Ethereum (ETH) and wrapped Ethereum (WETH) as
well as Lido Staked ETH (stETH) and wrapped Lido Staked ETH (wstETH). However, users can also wrap
and unwrap their Protected Collateral tokens (pTokens).

Step-by-step

1. Ensure that you have sufficient amount of asset in your account.

2. Select the assets you want to wrap or unwrap to/from.

3. Enter the amount you wish to wrap or unwrap.

4. Click the Wrap or Unwrap button.

FAQ

Can I wrap/unwrap other assets?
****You can only wrap/unwrap the assets listed in the dropdown.

Activate
Learn how to activate a market in Euler

About

Users can activate new lending markets for assets on Euler in a permissionless way. Assets must have a
Uniswap V3 WETH paired pool and should be listed on in order to appear in the asset's table.
Since Euler uses Uniswap's V3 pools for the market's oracle, it's highly recommended to only activate pools
with sufficient and wide range liquidity. Check out an asset's oracle risk .

CoinGecko

here

Step-by-step

1. Search and select an unlisted asset.

2. Click Activate to create a market for the token.

Unlisted tokens come from community token lists, contact support if the desired token does not
appear in the list.

Borrowing will not be available right away, somebody has to lend the asset first.

FAQ

Where can I Activate a market?
****Search for an asset in the search bar on the .Euler app

I've activated a market, how come I cannot use it as collateral?
****Newly activated markets are automatically set as isolated tier assets. Create a proposal to make it a
collateral tier asset if it has sufficient liquidity in its oracle.

https://coingecko.com/
https://oracle.euler.finance/
https://app.euler.finance/

Allowances
Learn how to change asset approvals through Allowances in Euler

About

Allowances enable users to add, update or revoke approval of the Euler protocol to access markets in the
user's wallet. Users can change the amount of tokens in pre-approved markets.

Step-by-step

1. Select an asset from the list.

2. Enter the amount you wish to allow the protocol to approve for use and click Update .

Max will allow the protocol to use the total supply of that token, not just what the user owns.

Enter 0 (zero) to restrict the protocol from using any more than zero tokens.

3. If listed, change the pre-approved amounts by entering a new amount and clicking Update or by

selecting Max .

4. To completely revoke allowance, select the Revoke button.

FAQ

I've changed my allowances, but now I cannot complete some transactions.
****Make sure the amount in your transaction is allowed in the amount you've permitted in the allowances.

Retrieve Browser Errors
Learn how to retrieve errors from the developer console in your browser

About

Sometimes an error will occur that needs further investigation by the Euler Labs team. If you have created a
support ticket in , then you may be asked to report errors from the browser console to the team. You
will find the instructions for doing this below.

Discord

IMPORTANT: the Euler Labs team will never ask for your private keys or passphrase.

Step-by-step

https://discord.gg/CdG97VSYGk

1. Open the developer console by pressing Option + ⌘ + J (on macOS) or Shift + CTRL + J (on
Windows/Linux). You can open it by right-clicking anywhere on the webpage and selecting Inspect
Element option.

2. On the top of the developer panel, there are multiple tabs like Elements, Console, Networks, and
Sources.

3. Click on the Console tab

4. Console is a place where we have all errors, warnings and general logs that appeared during the run
time of the website.

5. You will find the current errors in red text with a specific error code, the cause, and the file name and
line number where this error occurred.

FAQ

Let us know if there's anything you think we should add here.

Lending and Borrowing
Below is a basic example of lending and borrowing on Euler protocol. This is not
financial advice and only serves as an educational example on using the protocol.

Let’s say you want to borrow XYZ token. XYZ token ranks high in the index list, and therefore has a borrow
factor of 0.80.

Lending

Since the loan is collateralised, you first need to deposit (lend) one or more collateral assets. You deposit
ABC, which is a stable coin with a collateral factor of 0.90.

You lend 1000 ABC (1000 USD worth), receive eABC (claim on deposited ABC and interest accrued from
utilisation). Note that the more users borrow your ABC tokens, the more interest you accrue and hence the
higher value of your collateral.

Borrowing

To calculate the maximum amount of XYZ you can borrow, multiply the borrow and collateral factors: 0.80 x
0.90 = 0.72. Consequently, you can borrow up to 720 USD worth of XYZ against 1000 ABC (0.72 x 1000
ABC).

If you decide to borrow 700 USD worth of XYZ, Euler will mint an equivalent amount of dXYZ (debt token
equal to principal amount owed and accrued borrowing costs). Note that if borrowing rates rise, your debt
levels will increase as well.

Liquidation Risks

If XYZ token rose in price and/or borrowing interest rose significantly so that the value of your dXYZ rose
above 720 USD, you are subject to liquidation and your claim on the collateral (eABC) will be given to a
liquidator at a discount as well as your debts (dXYZ) in exchange for repaying the debt.

Similarly, should the value of ABC plummet, your eABC won’t be enough to maintain the 0.72 factor, and
you will be subject to the same liquidation procedure.

Return Potential

Alternatively, if you borrowed XYZ, sold it and XYZ price plummeted, you’d be able to repay your debts at a
lower level and make a profit. You could also utilize your position by selling XYZ, buying more collateral,
borrowing more XYZ etc. until you reach the borrowing limit. This way, you’d have a multiplied short
XYZ/ABC position. More on the mechanics of multiplied positions .here

Note: we have implemented the swap module that allows users to utilize their positions easily without
incurring additional gas fees.

https://medium.com/@Hoytech/82402529c51b

FAQ
Get answers to frequently asked questions about Euler.

General

What is Euler?

Euler is a non-custodial protocol on Ethereum that allows users to lend and borrow almost any crypto asset.
Learn more about how Euler works by reading the here.white paper

Who developed Euler?

Euler was initially created by a team of developers at a company called Euler Labs (see website).
Today it is progressively decentralising and receives contributions from the external developer community
as well as ongoing contributions from Euler Labs.

here

What is EulerDAO?

EulerDAO is a decentralised autonomous organisation encapsulating all holders of a governance token
called EUL. Holders of the token have voting powers to propose and make changes to the underlying code
of the Euler Protocol.

What is the Euler Foundation?

Since DAOs not have a formal legal structure, the Euler Foundation was established as a non-profit
Foundation Company designed to represent EulerDAO in the ‘real world’. The Euler Foundation has no
shareholders and cannot pay out dividends to its members. Its purpose is to provide a vehicle by which
EulerDAO can sign a contract or engage a company for a service that the DAO requires.

Community Involvement

How can I get involved in EulerDAO?

Join the and meet the community, make proposals and discussion on the , or
send a message if you have other ideas of contributing to the protocol.

Discord governance forum

Where is the developer documentation?

Please refer to the section and check out the .Developers Euler SDK

Where are your branding guidelines/materials?

The branding materials are located at the following link: . Copyright is owned by the
Euler Foundation.

euler.finance/branding

http://euler.xyz/
https://discord.gg/CdG97VSYGk
https://forum.euler.finance/
https://blog.euler.finance/announcing-the-euler-sdk-976f6e34c73
https://www.euler.finance/branding/#branding

Euler dApp

How do I deposit and borrow?

Check out the How To guides . Or just go to the , login via the Connect button on ETH
mainnet. Click on the Quick Action button. You can deposit and borrow through the same named action
buttons. Choose the asset and amounts, then approve of the transactions.

here Euler app

How do I activate a market?

Search for an asset in the search bar on the . Unlisted assets can be activated by the Activate
button, which will ask you to initiate the transaction. Once complete, the asset will be listed and activated.

Euler app

How do I get testnet tokens?

The Goerli testnet has a test ER20 token faucet smart contract deployed a
.0x1215396CB53774dCE60978d7237F32042cF3a1db

To get testnet tokens for Goerli, connect open the smart contract on Etherscan by clicking the link above.
Click on the tab with the green tick, then click on Write Contract and connect your wallet. Once

connected, expand the withdraw feature and paste the underlying ERC20 token smart contract address and
click on the Write button. This will require you to confirm the transaction in your wallet which costs gas.

Once confirmed, the token faucet smart contract will an amount of the specified testnet ERC20 token (up to a
pre-defined threshold) to your connected wallet address.

The Goerli testnet token faucet supports the following ERC20 tokens: , , , , ,
, , .

WETH UNI USDC USDT DOGE
WBTC COMP CRV

Why can't I find a specific token to activate?

Some tokens might not be on the token list or might not have a pool on Uniswap v3. Please
if you have trouble finding an unlisted asset.

send a message

What are asset tiers?

Euler uses risk-based to protect the protocol and its users. Isolated and Cross assets cannot be
used as collateral, but Cross assets can be borrowed alongside other assets, while Isolated assets cannot.

asset tiers

What are sub-accounts?

 enable users to isolate positions into different accounts.Sub-accounts

What oracle does Euler use?

By default Euler uses V3 Time Weighted Average Price (TWAP) as the pricing oracle. However,
the oracle used can be changed in the governance process on one-to-one basis. Currently, Euler also
supports Chainlink price feeds as a price source.

Uniswap

https://app.euler.finance/
https://app.euler.finance/
https://goerli.etherscan.io/address/0x1215396CB53774dCE60978d7237F32042cF3a1db
https://goerli.etherscan.io/address/0xa3401DFdBd584E918f59fD1C3a558467E373DacC
https://goerli.etherscan.io/address/0x2980D241BEA2A49d3333AA931884d68C704E7Db7
https://goerli.etherscan.io/address/0x693FaeC006aeBCAE7849141a2ea60c6dd8097E25
https://goerli.etherscan.io/address/0x7594a0368F18e666480Ad897612f28ad17435B4C
https://goerli.etherscan.io/address/0x67cF0FF98bE17bF02F7c6346028C9e8BB3c203B2
https://goerli.etherscan.io/address/0xc49BB678a4d822f7F141D5bb4585d44cCe51e25E
https://goerli.etherscan.io/address/0x6520f3394a2000eA76e7cA96449B78BB0eD07561
https://goerli.etherscan.io/address/0x9eA3D1d18A0e7Ec379C577f615220e6D715F3b29
https://discord.gg/CdG97VSYGk
https://docs.euler.finance/developers/getting-started/architecture#sub-accounts
https://docs.uniswap.org/protocol/concepts/V3-overview/oracle

What is the oracle rating?

The attempts to rank Uniswap v3 price oracles for different markets high, medium, or
low based on the ease with which they can be manipulated.

Oracle Rating system

What are the reserves?

 are protocol-owned liquidity deposited on Euler to provide a backstop against a 'run on the bank'
scenario. Reserves build up over time as borrowers pay interest on their loans. The reserves are ultimately
controlled by EulerDAO Governance.

Reserves

How can an asset become collateral?

An asset must have substantial liquidity with wide distribution in its Uniswap V3 WETH paired pool. If the
asset has a low-risk oracle, it is in a better position to be regarded as a safer asset to become collateral
through a .governance proposal

Is Euler on any other chains/L2s?

Euler is currently only on Ethereum Mainnet. Euler is open to and exploring other chains and layers, but
nothing is currently imminent.

What is the difference between Sign Permit and Enable?

Enable is the standard approval transaction that allows Euler smart contracts access to that asset. You can
edit the amount from unlimited in Metamask. Sign Permit is a gasless way of approving a contract to use
your tokens as a one-time allowance ().EIP-2612

Features

What are Mint and Burn?

 enables users to more efficiently create leveraged positions of borrowers and deposits. For example, a
user can deposit $1,000 USDC, and mint $2,000 USDC. Then you will have $3,000 USDC deposits, and
$2,000 USDC liabilities. Burn closes Mint positions.

Mint

What does the Transfer action do?

Users can deposits (eTokens) and debt (dTokens) to other accounts. Always check the accounts
involved in your operation will have sufficient collateral to support it.

transfer

Can I swap tokens?

Yes, the swap feature enables users to exchange one deposited asset for another using Uniswap and 1inch
DEXs.

How can I short a token?

https://docs.euler.finance/developers/architecture#reserves-1
https://forum.euler.finance/t/welcome-to-the-euler-governance-forum/7
https://eips.ethereum.org/EIPS/eip-2612

The action allows users to build a leveraged short position by borrowing and then immediately selling
an asset on an external exchange, including 1inch and Uniswap.

Short

Should I mine at 19x?

Euler does not give financial advice, but users should note that mining at 19x is highly risky and can lead to
liquidation if the user’s collateral cannot cover the interest fees. Mining at 19x most often liquidates positions
within the same day it is created.

What is Time To Liquidation (TTL)?

 allows users to see the amount of time they have until their position is liquidated based on the current
interest rates and prices of those positions.
TTL

What is a soft liquidation?

Euler allows to repay up to the amount needed to bring a violator back out of violation (plus an
additional safety factor). Other protocols are fixed so that liquidators can pay off up to half a borrower's loan
in one go, regardless of how underwater their position is.

liquidators

Gauges & EUL Distribution

How can I claim EUL tokens?

Users can go to the , click on the Claim button in the navbar and claim any available tokens of
previous epochs in the Distribution window once EUL tokens are available to claim.

Euler app

What utility does EUL have?

EUL’s main utility is as a for the Euler protocol. Users with EUL can have a say in the
future decisions and direction, as well as the EUL distribution in the Euler gauges.

governance token

What is the distribution of EUL tokens for borrowers?

The distribution is decided by the amount of EUL tokens staked in the .gauges

How are markets decided for each epoch?

Users can add or remove EUL distribution eligible markets simply by staking EUL tokens in their preferred
gauges. See the link in the above question for the results of these votes. Please see for the latest
iteration of EUL distribution.

eIP 51

In order to receive EUL emmission, assets (as per) need to have a Chainlink pirce feed as well as
receive EUL votes in the gauge system.

eIP 24

EUL Token

https://www.euler.finance/blog/announcing-new-features-of-euler-dapp
https://app.euler.finance/
https://github.com/euler-xyz/euler-docs/blob/master/app/broken-reference/README.md
https://app.euler.finance/gauges
https://snapshot.org/#/eulerdao.eth/proposal/0x551f9e6f3fba50a0fc2c69e361f7a81979189aa7f0ed923a1873bd578896942b
https://snapshot.org/#/eulerdao.eth/proposal/0x7e65ffa930507d9116ebc83663000ade6ff93fc452f437a3e95d755ccc324f93

Is there a token? How can I earn it?

The Euler token (EUL) is distributed to borrowers on select markets on the platform. Please see the
section for more details.

Gauges

What are the tokenomics?

Allocation, vesting and other information about the EUL token can be found in the About section under .EUL

Is there a TGE/ICO/IDO?

There is no public sale.

Where can I trade EUL?

While EUL token has been released, Euler Labs does not give financial advice on trading the token.

How do I get an airdrop?

There is no airdrop. 1% of the supply was allocated to users who interacted with the dApp during
as a one-off retroactive distribution.

Epoch 0

Do testnet users receive rewards?

No, is to preview upcoming features and for users to learn about the protocol without any mainnet
gas fees.

testnet

Someone messaged me promising free tokens/ICO/NFTs/etc, is it real?

No, that is fake. No one related to Euler will ever message anyone directly, nor offer free tokens or
investments of any kind.

Partnerships

Who can I contact about partnerships/integrations?

Feel free to reach out through Discord or other platforms in the Quick Links section. Also read the
 for more details.

integration
guide

Can we list EUL on our exchange?

Euler cannot advise on exchange listings, nor pay for any listings.

Can we offer our token in your liquidity mining programme?

https://docs.euler.finance/eul/gauges
https://docs.euler.finance/eul/about
https://docs.euler.finance/governance/distribution#epoch-0
https://goerli.euler.finance/

Euler will be adding this feature in the near future. Please get in touch if you’d like to integrate with the
distribution mechanisms.

Can you market our company/token if we pay you or activate our token?

Sorry, Euler does not accept payments or donations of any kind to promote activated markets.

Miscellaneous

How does the Euler dApp detect wallets associated with illicit activities?

In alignment with industry best-practices, Euler utilizes Chainalysis to identify and block wallets that are
associated with certain illicit activities.

Chainalysis is a market leader in protecting against interactions with bad actors linked to sanctions, financial
crime, child sexual abuse material, terrorist financing, scams, hacked or stolen funds, ransomware, and
human trafficking.

It is Euler’s aim to prevent those engaged or associated with illegal activity from using the protocol. Euler is
committed to responsible development, innovation, and financial inclusion.

Euler Protocol

Getting Started

Risk Methodology
Learn more about how risk parameters on Euler are determined

Introduction

The Euler risk framework aims to do two things:

1. Maximise capital efficiency through borrowing and lending activity; and

2. Minimise risk and the probability of bad debts.

To achieve this, a methodology to stress test individual assets as well as simulate a portfolio of assets in tail
risk scenarios.

Methodology

Ranking all available ERC20 tokens according to risk parameters:

1. Smart Contract Risk

2. Centralisation

3. Volatility

4. Liquidity

Additionally, assessing Oracle Risk

In order to arrive at:

1. Collateral Factor

2. Borrow Factor

3. Cross Tier Factor

Simulate risk scenarios to maximise borrowing and lending activity and minimise bad debts

Update factors and methodology through governance

Asset Tiers

Euler assets fall into three different tiers: isolated, cross and collateral tiers.

Isolated Tier

Isolated tier assets are available for ordinary lending and borrowing, but they cannot be used as collateral
to borrow other assets, and they can only be borrowed in isolation. What this means is that they cannot be
borrowed alongside other assets using the same pool of collateral. For example, if a user has USDC and
DAI as collateral, and they want to borrow isolation-tier asset ABC, then they can only borrow ABC. If they
later want to borrow another token, XYZ, then they can only do so using a separate account on Euler.

Governance allows to promote assets to cross and collateral tiers, but also to alter borrow factors. However,
there will be a default borrow factor for all assets listed in the isolated tier.

Cross Tier

Cross tier assets are available for ordinary lending and borrowing, and cannot be used as collateral to
borrow other assets, but they can be borrowed alongside other assets. For example, if a user has USDC
and DAI as collateral, and they want to borrow cross-tier assets ABC and XYZ, then they can do so from a
single account on Euler.

Collateral Tier

Collateral tier assets are available for ordinary lending and borrowing, cross-borrowing, and they can be
used as collateral. For example, a user can deposit collateral assets DAI and USDC, and use them to
borrow collateral assets UNI and LINK, all from a single account. \

Collateral and Borrow Factor

On Euler, we use a two-sided approach to estimate risks of borrowing any tokens versus any given
collateral. These risks are encapsulated in asset-specific collateral factors (as on Compound) and borrow
factors (an Euler innovation).

Consequently, collateral factor reflects the risk of the asset that’s being used as collateral, whilst borrow
factors reflect risks of the asset that’s being borrowed.

Collateral Assets

When it comes to quality of collateral, it is of paramount importance that it ranks very high in our index list.

An illiquid collateral asset can be exploited by causing a price surge to allow a malicious user to borrow an
inflated amount of tokens without an incentive to return them.

Alternatively, a collateral asset that’s collapsing in price and is experiencing high slippage makes it
uneconomical for liquidators to close positions, leading to bad debts. This scenario is more systemic, which
is why only the highest quality assets can become eligible collaterals.

Borrowed Assets

While borrowed assets are less systemic than collateral assets, they also have specific risks.

For example, a borrowed token price that triples in a matter of seconds versus its collateral means there’s no
incentive for the borrower to return the token, which results in bad debt. This is why the borrow factor should
reflect the volatility and liquidity of the asset.

Alternatively, crashing a borrowed asset's price allows a malicious actor to borrow more tokens than
normally possible. This attack can happen if there's not enough liquidity overall, especially if liquidity is too
concentrated around a tiny range.

Ranking Assets

Scale

Each risk parameter goes from 0 (highest risk) to 1 (lowest risk). The combination of risk parameters results
in a comprehensive index for a given digital asset, which also goes from 0 to 1.

Risk Parameters

Smart Contract Risk

Smart contract risk parameter can either be 0, 0.5 or 1.

It is arguably the biggest tail risk, as a badly written smart contract can result in hacks and stolen money,
leading to catastrophic collapse in price.

We assess this by checking whether the protocol was audited, the number of days the protocol has
been functioning without hacks and deeper research if needed (for promoting up the tiers).

Centralisation

Centralisation parameter can go from 0 to 1.

It measures whether a small number of holders have undue influence over the token. For example, a
founder with 70% ownership of the tokenomics pie and flexible vesting period can oversupply the market
with tokens, leading to an abrupt sell-off. Alternatively, a whale holding a large chunk of tokens can easily
pass deleterious changes through governance.

This risk can be measured by estimating the median size of token amount per holder. When the
ownership structure isn’t transparent, we will employ forensic due diligence.

Volatility

Volatility parameter can go from 0 to 1.

All other things equal, an asset with 100% realised volatility is more likely to cause a liquidation than an
asset with a 10% realised volatility. Hence, less volatile assets should have more favourable borrowing and
collateral factors.

This parameter can be measured via realised (and implied, if available) volatility, with emphasis on
downside risk for collaterals and upside risk for borrowed assets.

Liquidity

Liquidity parameter can go from 0 to 1.

An asset with 100 mil USD daily turnover is easier to buy and sell versus an asset with only 1 mil USD
turnover, all other things being equal.

This is particularly important for liquidators that receive collateral assets at discount for repaying borrowed
tokens, as they typically immediately sell that collateral. If they’re unable to sell that collateral and/or buy the
borrowed asset at a decent price given a liquidator discount, then they do not have the incentive to liquidate.
This leads to bad debts, which we need to minimise.

Measuring liquidity can be done by estimating historical slippage caused by a certain amount of volume.

It's important to note that we are estimating the liquidity vs ETH on Uniswap v3, as an existing ETH market
on Uniswap v3 is a prerequisite to being activated on Euler and our oracles are based on Uniswap v3
TWAPs.

This means that even if a token has very high liquidity on Uniswap v2, it wouldn't necessarily have a high
borrow factor if liquidity is low on Uniswap v3.

Oracle Rating

What is an oracle?

Within the context of pricing, an oracle is an on-chain API for price. Differently put, it simply tells you what
the price of an asset is at a given time.

Oracle Risk

While we think Uniswap's oracles are best suited for our permissionless lending protocol, depositing into an
Euler pool backed by illiquid liquidity pools on Uniswap can lead to devastating results.

For instance, inflating the value of a collateral allows the attacker to borrow an inflated amount of tokens,
leading to bad debt. This is the most systemic and widespread attack on lending protocols.

Alternatively, if the Uniswap V3 oracle of the borrowed asset is manipulated to the upside, the attack could
trigger liquidations and sweep borrowers' collateral.

Even more of concern is when the attacker can manipulate the asset pricing to the downside. Hypothetically,
if the price drops to almost zero, the attacker only needs a small amount of collateral to borrow the entire
pool and run away with a hefty profit.

Euler’s Oracle Risk Grading System

In order to assess an oracle's safety, our team have developed a tool to calculate the cost of moving a given
Uniswap v3 TWAP: .oracle.euler.finance

Using the tool, we can calculate the cost of moving the TWAP by 20.89% (minimum required to break even
on highest-quality assets) up and down over 1 and 2 blocks:

https://oracle.euler.finance/

Then, we take the minimum of these 4 values: $469.63 million and assign a rating to it according to this
table:

Consequently, UNI/WETH pool safety is deemed high as the minimum cost of attack up and down over 1-2
blocks is > $50 million.

This is displayed on the front-end page of the respective lending pool:

Keep in mind that this is merely an indicative tool and we bear no responsibility for loss of funds.

How to Improve the Oracle Rating?

If you are a project that wants to improve its token's oracle rating and be eligible for higher borrow and
collateral factors, it's crucial to provide full-range liquidity to the XYZ/WETH pair on Uniswap V3.

By full-range liquidity we mean providing liquidity from the lowest tick all the way to the highest tick
without any gaps in between.

A good example is :METIS/WETH

https://info.uniswap.org/#/pools/0x1c98562a2fab5af19d8fb3291a36ac3c618835d9

A suboptimal scenario is , where liquidity is uber-concentrated:HEGIC/WETH

Check out this going through different manipulation scenarios for a more in-depth explanation:video

It's important to note that even a small amount of fully-spread liquidity can significantly increase the
cost of attack. For eg, the pool has a mere $52k TVL, yet the minimum cost of attack is a
whopping $115 million:

 IDLE/WETH

T

References

Check out this blog post written by Darek explaining the oracle tool: https://blog.euler.finance/uniswap-
oracle-attack-simulator-42d18adf65af

https://info.uniswap.org/#/pools/0xf2c3bd0328bdb6106d34a3bd0df0ef744551cc82
https://www.youtube.com/watch?v=snwUwj3QQ7M&t=1s&ab_channel=EulerFinance
https://info.uniswap.org/#/pools/0x79e42a2bb91a0f9118e2b5231958c1eaefce390c
https://blog.euler.finance/uniswap-oracle-attack-simulator-42d18adf65af

Check out Michael's paper on how even a small amount of full-range liquidity can make an attack incredibly
costly: https://github.com/euler-xyz/uni-v3-twap-manipulation/blob/master/cost-of-attack.pdf

https://github.com/euler-xyz/uni-v3-twap-manipulation/blob/master/cost-of-attack.pdf

Simulation Environment

To make sure we minimise bad debts whilst maximising activity, we stress-test liquidation scenarios by
simulating tail risk events on individual assets as well as on portfolios of assets to estimate bad debt risk.

Example: One asset

For instance, if our index list shows that a token jumped from 250th to 30th place and was able to maintain
that position for a sufficient amount of time, we may simulate activity versus bad debts as a share of total
loans given different borrow factors. As a result, we may improve the borrow factor from 0.28 to 0.35.

Example: Portfolio of assets

Alternatively, we can simulate a more complicated environment with 50 tokens from the lower quartile as
borrowed assets backed uniformly by 4 collateral assets (3 of them time-tested and 1 proposed new
collateral) in high volatility situations. By simulating tail risk scenarios, we can assess the worst-case
scenario for the protocol and decide whether inclusion of the collateral asset is appropriate.\

Addresses
Smart contract addresses for Euler

Besides Euler, the smart contracts are upgradeable via Governance which will be controlled by EUL token
holders (i.e., the implementation contracts will be upgraded periodically). Hence, for contract interaction,
please use the proxy smart contract addresses.

For example, using to interact with the Markets contract, we use the Markets contract ABI but set the
Markets contract proxy address as the target contract:

web3.js

const markets = new Contract(MarketsABI, Markets_Proxy_Address); // proxy address

Networks

The Euler protocol is currently deployed to the following networks:

Mainnet

https://web3js.readthedocs.io/en/v1.2.11/web3-eth-contract.html

Contract Proxy Address
Etherscan
(Proxy)

Etherscan
(Implementation)

Source Code

Euler

0x27182842E09
8f60e3D576794
A5bFFb0777E02
5d3

​ ​ ​Etherscan ​ ​GitHub

Markets

0x3520d5a91342
7E6F0D6A83E0
7ccD4A4da316e
4d3

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Liquidation

0xf43ce1d09050
BAfd6980dD43C
de2aB9F18C85b
34

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Exec

0x59828FdF7ee
634AaaD3f58B1
9fDBa3b03E2D9
d80

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Swap

0x7123C8cBBD7
6c5C7fCC9f7150
f23179bec0bA34
1

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

SwapHub

0x542ACC8E1d
b037d6008587a
BfB1B7fB44014c
629

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Governance

0xAF68CFba29
D0e15490236A5
631cA9497e035
CD39

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

EulerSimpleLens

0xAF68CFba29
D0e15490236A5
631cA9497e035
CD39

​ ​ ​Etherscan ​ ​GitHub

Goerli

https://etherscan.io/address/0x27182842E098f60e3D576794A5bFFb0777E025d3
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/Euler.sol
https://etherscan.io/address/0x3520d5a913427E6F0D6A83E07ccD4A4da316e4d3
https://etherscan.io/address/0xE5d0A7A3ad358792Ba037cB6eE375FfDe7Ba2Cd1
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Markets.sol
https://etherscan.io/address/0xf43ce1d09050BAfd6980dD43Cde2aB9F18C85b34
https://etherscan.io/address/0xAed37a234cc880a9e3D9Fd9022013eE0A419493e
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Liquidation.sol
https://etherscan.io/address/0x59828FdF7ee634AaaD3f58B19fDBa3b03E2D9d80
https://etherscan.io/address/0x14cBaC4eC5673DEFD3968693ebA994F07F8436D2
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Exec.sol
https://etherscan.io/address/0x7123C8cBBD76c5C7fCC9f7150f23179bec0bA341
https://etherscan.io/address/0xf40e8314143B4CF1764CCCd22588a8794a00d8Ca
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Swap.sol
https://etherscan.io/address/0x7123C8cBBD76c5C7fCC9f7150f23179bec0bA341
https://etherscan.io/address/0x542ACC8E1db037d6008587aBfB1B7fB44014c629
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/SwapHub.sol
https://etherscan.io/address/0xAF68CFba29D0e15490236A5631cA9497e035CD39
https://etherscan.io/address/0x554ee3d9ed7E9ec21E186c7dd636430669812f73
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Governance.sol
https://etherscan.io/address/0x5077B7642abF198b4a5b7C4BdCE4f03016C7089C
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/views/EulerSimpleLens.sol

Contract Proxy Address
Etherscan
(Proxy)

Etherscan
(Implementation)

Source Code

Euler

0x931172BB955
49d0f29e10ae2D
079ABA3C6331
8B3

​ ​ ​Etherscan ​ ​GitHub

Markets

0x3EbC39b84B1
F856fAFE9803A
9e1Eae7Da016D
a36

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Liquidation

0x66326c072283
feE63E1C3feF9
BD024F8697EC
1BB

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Exec

0x4b62EB67975
26491eEf6eF36
D3B9960E5d66
C394

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Swap

0xA0AAb1Ddd16
5cE80AE2b9bC9
bBE3b6EEFBB2
300c

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

Governance

0x496A8344497
875D0D8051678
74f2f938aEa156
00

​ ​Etherscan ​ ​Etherscan ​ ​GitHub

ERC20 Token
Faucet

0x1215396CB53
774dCE60978d7
237F32042cF3a
1db

​ ​ ​Etherscan ​ ​GitHub

EulerSimpleLens

0x62626a0f051B
547b3182e55D1
Eba667138790D
8D

​ ​ ​Etherscan ​ ​GitHub

Note: the Governance smart contract is currently used for our risk-guarded launch (Phase 1 of the mainnet
launch) while we build up to community-led governance in Phase 2.

https://goerli.etherscan.io/address/0x931172BB95549d0f29e10ae2D079ABA3C63318B3
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/Euler.sol
https://goerli.etherscan.io/address/0x3EbC39b84B1F856fAFE9803A9e1Eae7Da016Da36
https://goerli.etherscan.io/address/0xeE28839fde1e462C8e0b80DE618cB98dB3c017F8
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Markets.sol
https://goerli.etherscan.io/address/0x66326c072283feE63E1C3feF9BD024F8697EC1BB
https://goerli.etherscan.io/address/0x849f5CC81d12887BC0e4e42D8C87AbA896bDCAC0
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Liquidation.sol
https://goerli.etherscan.io/address/0x4b62EB6797526491eEf6eF36D3B9960E5d66C394
https://goerli.etherscan.io/address/0x6C933044542d6cAF8927E516B9A99632697bD4C0
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Exec.sol
https://goerli.etherscan.io/address/0xA0AAb1Ddd165cE80AE2b9bC9bBE3b6EEFBB2300c
https://goerli.etherscan.io/address/0x034FCa46b265b4805e00E109A5ABA3E976625B1D
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Swap.sol
https://goerli.etherscan.io/address/0x496A8344497875D0D805167874f2f938aEa15600
https://goerli.etherscan.io/address/0xc9314acCF0d3754A38DdE280D24c51D280C33D16
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Governance.sol
https://goerli.etherscan.io/address/0x1215396CB53774dCE60978d7237F32042cF3a1db
https://github.com/euler-xyz/euler-contracts/blob/smart-contract-deployments/contracts/test/TestERC20TokenFaucet.sol
https://goerli.etherscan.io/address/0x62626a0f051B547b3182e55D1Eba667138790D8D
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/views/EulerSimpleLens.sol

Parameters
All of these parameters may be amended by governance

Borrow Factor

When someone activates a lending market on Euler for an asset XYZ, it is by default an isolated tier asset
and its borrow factor is 0.28.

This means that if you lend USDC (Collateral Factor of 0.90) and borrow XYZ at Default Borrow Factor
(Borrow Factor of 0.28), your effective factor is approximately 0.25 (0.90 x 0.28).

Consequently, when borrowing default assets, you are required to be at minimum 4x overcollateralised. The
factor is even more conservative if you borrow against an asset with a lower collateral factor.

Conservative overcollateralisation is intended to prevent bad debts.

For example, suppose the borrowed asset XYZ sharply skyrockets in price, causing a user's health factor to
dip below 1, which means he is subject to liquidation. For the liquidator to be incentivised to liquidate the
user, he needs to receive an attractive liquidation bonus in terms of the violator's lent assets. If there are
simply not enough lent assets to back the bonus, a liquidator will choose not to liquidate. This leads to bad
debts.

Alternatively, someone could manipulate XYZ pricing lower to be able to borrow a lot more XYZ than
normally possible. Eventually, the price gets arbitraged and normalises, which leads to the health factor
dipping below 1. Since the position is heavily overcollateralised, there is still enough collateral backing the
loan, and hence liquidators are incentivised to repay the debts.

For more info on collateral and borrow factors, check out our risk docs: https://docs.euler.finance/risk-
framework/collateral-and-borrow-factors

Reserve Factor

The default reserve factor is set at 23%.

This means that for every $1 of interest paid by borrowers on an XYZ asset, 23c is paid into the reserve pool
of XYZ while the remaining 77c are paid to lenders of XYZ. These reserves may later be used to repay the
bad debts that accrue in the pool.

While a higher reserve factor would in theory help accumulate more substantial reserves to backstop the
Euler lending pools, at some point it would discourage lenders as they'll receive too little interest.

Alternatively, a reserve factor that's too low is a lost opportunity to build reserves and hence trust with
lenders.

We think a reserve factor of 23% is a perfect balance between building reserves and encouraging lending,
especially given our generous EUL distribution scheme that will run in the first few years of Euler protocol's
existence.

https://docs.euler.finance/risk-framework/collateral-and-borrow-factors

Interest Rate Model

While we eventually plan to move to a reactive interest rate model that will optimise for utilisation, we start
off with a standard kink model. The default kink model is the "small cap" model and its parameters are:

1. Base IR: 0% (APY when utilisation is 0%)

2. Kink IR: 10% (APY when utilisation is exactly Kink%)

3. Max IR: 300% (APY when utilisation is 100%)

4. Kink%: 50% (Percent utilisation where kink occurs)

Given the default assets and their respective utilisation can be extremely volatile, it's important that the
lenders aren't constantly exposed to withdrawal risk.

To that end, should utilisation sharply rise beyond the Kink%, high Max IR makes borrowing too expensive
to maintain and hence lowers the withdrawal risk

Pricing Parameters

Uniswap3 Pool Fee-Level

The default uniswap3 pool fee-level is the first existing of 0.3%, 0.05%, 1%.

In order to retrieve asset prices, Euler uses Uniswap3's Time-Weighted Average Price (TWAP) for the pair
XYZ/WETH, where XYZ is the asset in question and WETH is the reference asset. Since Uniswap3
supports multiple pools for the same pair which differ by fee-level, which pool to actually query needs to be
configured on a per-asset basis.

Although in theory pools should converge to similar prices due to arbitrage, this is not always the case. For
example, when a pool has insufficient liquidity to be profitable for arbitrage bots. Additionally, the amount of
liquidity has an impact on the cost of price manipulation.

In order to be promoted up a tier, a review of the configured pool fee must be conducted. In some cases,
extra "full-range liquidity" must be added to increase the cost of price manipulation.

TWAP Length

The default TWAP length is set at 30 minutes.

Euler uses Uniswap v3 TWAPs as the pricing oracle for all assets and debts on Euler.

As explained in our , a TWAP is essentially a moving average of trades that occurred in a given
Uniswap v3 pool. The intention for using TWAPs is that it makes price manipulations prohibitively expensive
the longer the TWAP window is.

whitepaper

However, a TWAP that's too long causes a significant lag between last-traded price on Uniswap and the
TWAP, leading to risks of bad debt.

https://docs.euler.finance/getting-started/white-paper#twap

For eg, a user deposits ETH as collateral and borrows XYZ token. Imagine that the user's XYZ debt swells
to $70 worth, and he's subject to liquidation. A liquidator would have to take on some of that XYZ debt and
repay it.

However, recall that while the debt is priced in TWAP terms, a liquidator would need to buy XYZ on the
market to repay that debt. If the market price of his debt is $120, the liquidator would be buying high on the
market to receive a smaller amount of TWAP-priced assets of the violator plus liquidation bonus.

Hence, when the TWAP - Market Price spread become significantly large due to the TWAP lag, a liquidation
may be uneconomical.

Alternatively, a TWAP that's too short means it becomes a lot cheaper to manipulate asset prices. For
example, one could artificially pump a collateral asset's price to be able to borrow a disproportionate amount
of XYZ tokens and run away with them.

Check out this paper written by Michael Bentley on cost of attacking TWAP pricing: https://github.com/euler-
xyz/uni-v3-twap-manipulation/blob/master/cost-of-attack.pdf

Additionally, have a look at this blog post by Seraphim on possible attacks involving oracle manipulation
and how Euler is preventing them: https://blog.euler.finance/risks-in-crypto-a-lending-protocol-perspective-
376e19c1d01a

Uniswap Observation Cardinality

The minimum uniswap3 cardinality is 10. When a market is activated, the cardinality of the uniswap3 pool
that will be used for pricing is increased to this value, if it is currently below it.

In order to maintain the TWAP, each Uniswap3 pool needs to keep a historical record of accumulated prices
at previous points in time. Each record is called an observation, and their number is called the observation
cardinality. Unfortunately, reserving the storage for these records costs gas.

The larger the cardinality, the longer the possible TWAP window. If a swap is executed every block, the
longest TWAP that is possible is the cardinality times the average block time over the last N blocks.

On Euler, if it is not possible to retrieve a TWAP of the configured length, then the oldest available price is
used instead. This means that the protocol can always be interacted with, and prevents some types of
attacks that aim to prevent liquidation. However, it also means that the cardinality is an important security
parameter for a pool.

This low minimum value ensures that activating a market is not too expensive. However, since a larger
cardinality is required to ensure a longer TWAP window, in order for an asset to be promoted to a higher tier,
a larger value cardinality will be required, typically 144 or higher.

Liquidation Parameters

Target Health Factor

The default target health factor is 1.25.

https://github.com/euler-xyz/uni-v3-twap-manipulation/blob/master/cost-of-attack.pdf
https://blog.euler.finance/risks-in-crypto-a-lending-protocol-perspective-376e19c1d01a

When a user is in violation due to his risk-adjusted liabilities exceeding his risk-adjusted collateral, his
health factor dips below 1. However, should a liquidator come in, he may only take enough debt and assets
from the violator to shift his health factor to 1.25.

This is feature is called soft liquidating , and it creates a much better
borrowing experience than on other protocols where 50% of your debt is liquidated.

as described in the whitepaper

Nevertheless, had we set the target health factor to 1.00, we would have run into the risk of making
liquidations uneconomic. Namely, the size of debt being repaid, and the consequent reward may be too
small to incentivise a liquidator.

Similarly, in a volatile market, being restored to 1.00 means a user may quickly dip below 1.00 again and
again, which implied higher gas fees for liquidators and ever-decreasing rewards.

We think 1.25 is a good trade-off between a good borrowing experience and well-incentivised liquidations.

Maximum Liquidation Discount

The default maximum liquidation discount is set at 20%.

When a user is subject to liquidation, some of his debt (dTokens) and assets (eTokens) are transferred to the
liquidator, which leads to the health score shifting to 1.25.

However, to incentivise the liquidator to do this work, he receives the eTokens at a discount. Another way of
thinking about the discount is receiving a bonus on top of the asset value.

Let's imagine a simple example without liquidation surcharges and boosters (explained in this page below):
assume a user's health factor is 0.90. This implies a liquidation discount of 10% (1 - 0.90). Hence, for taking
on $100 worth of dTokens, a liquidator receives $110 worth of eTokens.

If the discount is too low, a liquidator may be discouraged from conducting the liquidation. Alternatively, a
discount that's too high means borrowers are giving away too much of their assets to liquidators. This also
creates a risk of never going back to 1.25 health score, as every liquidation decreases the amount of assets
a user has.

Hence, a liquidation discount has an upper ceiling of 20% to improve the borrowers' experience.

Liquidation Surcharge

The default liquidation surcharge is set at 2%.

Whenever a liquidator takes on someone's debt, they need to repay 2% more than originally taken from the
violator. To compensate him for that, the violator pays the liquidator an additional 2% of his lent assets.

This is intended to do two things:

1. The surcharge accumulates in the reserve pool, and hence every liquidation makes the pool healthier.
The more volatile an asset, the more often liquidations occur, and the bigger the pool is.

2. Discourage malicious self-liquidation strategies. Due to the surcharge, every self-liquidation ends up
being net negative.

https://docs.euler.finance/getting-started/white-paper#soft-liquidations

Liquidation Booster Ceiling and Slope

The default liquidation booster is ceiling and slope are set at 2.5% and 2x respectively.

To incentivise liquidators to lend, they may be more competitive than their peers should they lend through
Euler.

For example, if a user's health score is at 0.90 and value of risk-adjusted debt is $1,000, the implied
liquidation discount is 10% (1 - Health Score). However, due to slippage and gas fees, liquidators are only
profitable at an 11% discount.

At the same time, a liquidator that supplied $1,000 risk-adjusted collateral can be 2x more competitive than
the rest of the market with a ceiling of 2.5%. Should he take on the user's debt at a 10% discount, he will
actually receive a more generous 12.5% discount (2.5% booster + 10% liquidation discount).

How did we arrive at that number? The total liquidation discount is calculated the following way:

RASAL = Risk-adjusted supplied assets by the liquidator

RADV = Risk-adjusted debt by the violator

LiqSurcharge is explained above in this page and in this example is assumed to be 0 for simplicity's sake.

2x is the liquidation booster slope.

The Liquidation Booster is subject to a 2.5% ceiling.

The reasoning behind setting the ceiling at 2.5% is the same as the 20% maximum liquidation discount:
preventing the borrowers from overpaying when being liquidated. The 2x slope, on the other hand, is
intended to make the liquidators gradually more competitive the more assets they deposit, but not
outrageously more competitive to avoid the creation of monopolies.

Interest Rates
Find information about interest rates and their parameters on Euler

Introduction

While we eventually plan to move to a reactive interest rate model that will optimise for utilisation, we start
off with a standard kink model. The parameters of our kink model are:

1. Base IR (APY when utilisation is 0%)

2. Kink IR (APY when utilisation is exactly Kink%)

3. Max IR (APY when utilisation is 100%)

4. Kink% (Percent utilisation where kink occurs)

The main consideration is maintaining target utilisation (typically at Kink%).

Asset Base IR % Kink IR % Max IR % Kink %

1INCH 0.00 20.00 300.00 80.00

AAVE 0.00 20.00 300.00 80.00

AGEUR 0.00 4.00 100.00 80.00

ALCX 0.00 10.00 300.00 50.00

ANT 0.00 10.00 300.00 50.00

APE 0.00 10.00 300.00 50.00

AURA 0.00 10.00 300.00 50.00

AXS 0.00 20.00 300.00 80.00

BABL 0.00 10.00 300.00 50.00

BADGER 0.00 10.00 300.00 50.00

BAL 0.00 20.00 300.00 80.00

BANK 0.00 10.00 300.00 50.00

BaoUSD 0.00 10.00 300.00 50.00

BED 0.00 10.00 300.00 50.00

BRIGHT 0.00 10.00 300.00 50.00

BUSD 0.00 20.00 300.00 80.00

CADC 0.00 10.00 300.00 50.00

CARD 0.00 10.00 300.00 50.00

cbETH 0.00 8.00 200.00 80.00

cETH 0.00 10.00 300.00 50.00

CNV 0.00 10.00 300.00 50.00

COMP 0.00 20.00 300.00 80.00

CRV 0.00 20.00 300.00 80.00

CTX 0.00 10.00 300.00 50.00

CVX 0.00 20.00 300.00 80.00

CVXCRV 0.00 10.00 300.00 50.00

DAI 0.00 4.00 100.00 80.00

DFI 0.00 10.00 300.00 50.00

DFX 0.00 10.00 300.00 50.00

DPI 0.00 10.00 300.00 50.00

DPX 0.00 10.00 300.00 50.00

DYDX 0.00 10.00 300.00 50.00

ENJ 0.00 10.00 300.00 50.00

ENS 0.00 20.00 300.00 80.00

ETH2X-FLI 0.00 10.00 300.00 50.00

EUL 0.00 10.00 300.00 50.00

EXRD 0.00 10.00 300.00 50.00

FIAT 0.00 10.00 300.00 50.00

FLOAT 0.00 10.00 300.00 50.00

FLX 0.00 10.00 300.00 50.00

FNT 0.00 10.00 300.00 50.00

FPIS 0.00 10.00 300.00 50.00

FRAX 0.00 20.00 300.00 80.00

FTT 0.00 10.00 300.00 50.00

FXS 0.00 10.00 300.00 50.00

GAMMA 0.00 10.00 300.00 50.00

GFI 0.00 10.00 300.00 50.00

GOHM 0.00 10.00 300.00 50.00

GRT 0.00 10.00 300.00 50.00

GTC 0.00 10.00 300.00 50.00

GUSD 0.00 10.00 300.00 50.00

HMT 0.00 10.00 300.00 50.00

HOP 0.00 10.00 300.00 50.00

IDLE 0.00 10.00 300.00 50.00

ILV 0.00 10.00 300.00 50.00

IMX 0.00 10.00 300.00 50.00

INDEX 0.00 10.00 300.00 50.00

IPT 0.00 10.00 300.00 50.00

KP3R 0.00 10.00 300.00 50.00

LDO 0.00 20.00 300.00 80.00

LINK 0.00 20.00 300.00 80.00

LOOKS 0.00 10.00 300.00 50.00

LQTY 0.00 10.00 300.00 50.00

LRC 0.00 10.00 300.00 50.00

LUSD 0.00 4.00 100.00 80.00

LYXE 0.00 10.00 300.00 50.00

MATIC 0.00 20.00 300.00 80.00

MILADY 0.00 10.00 300.00 50.00

MIM 0.00 20.00 300.00 80.00

MKR 0.00 20.00 300.00 80.00

MPL 0.00 10.00 300.00 50.00

MTA 0.00 10.00 300.00 50.00

MVI 0.00 10.00 300.00 50.00

NEXO 0.00 10.00 300.00 50.00

NMR 0.00 10.00 300.00 50.00

OGN 0.00 10.00 300.00 50.00

OHM 5.00 20.00 300.00 80.00

OS 0.00 10.00 300.00 50.00

OSQTH 0.00 20.00 300.00 80.00

PERP 0.00 20.00 300.00 80.00

PUNK 0.00 10.00 300.00 50.00

QNT 0.00 10.00 300.00 50.00

QSP 0.00 10.00 300.00 50.00

RAD 0.00 10.00 300.00 50.00

RAI 0.00 20.00 300.00 80.00

RBN 0.00 20.00 300.00 80.00

RENDOGE 0.00 10.00 300.00 50.00

REQ 0.00 10.00 300.00 50.00

RETH 0.00 10.00 300.00 50.00

RLC 0.00 10.00 300.00 50.00

RNDR 0.00 10.00 300.00 50.00

RPL 0.00 10.00 300.00 50.00

SDL 0.00 10.00 300.00 50.00

SETH2 0.00 10.00 300.00 50.00

SHIB 0.00 20.00 300.00 80.00

SLP 0.00 10.00 300.00 50.00

SNX 0.00 20.00 300.00 80.00

SOCKS 0.00 10.00 300.00 50.00

SOS 0.00 10.00 300.00 50.00

SSV 0.00 10.00 300.00 50.00

stETH * 4.00 100.00 80.00

STG 0.00 10.00 300.00 50.00

SUSD 0.00 10.00 300.00 50.00

SWISE 0.00 10.00 300.00 50.00

TCR 0.00 10.00 300.00 50.00

TON 0.00 10.00 300.00 50.00

TONCOIN 0.00 10.00 300.00 50.00

TORN 0.00 10.00 300.00 50.00

TRDL 0.00 10.00 300.00 50.00

TRYB 0.00 10.00 300.00 50.00

TSUKA 0.00 10.00 300.00 50.00

UBI 0.00 10.00 300.00 50.00

UNI 0.00 20.00 300.00 80.00
USDC 0.00 4.00 100.00 80.00

USDT 0.00 7.00 200.00 80.00

VEGA 0.00 10.00 300.00 50.00

WAMPL 0.00 10.00 300.00 50.00

WBTC 0.00 8.00 200.00 80.00

WETH 0.00 4.00 100.00 80.00

WILD 0.00 10.00 300.00 50.00

WNXM 0.00 10.00 300.00 50.00

WOO 0.00 10.00 300.00 50.00

WSTETH 0.00 8.00 200.00 80.00

XCN 0.00 10.00 300.00 50.00

XMON 0.00 10.00 300.00 50.00

YFI 0.00 20.00 300.00 80.00

YVBOOST 0.00 10.00 300.00 50.00

*stETH (current Lido staking APY)

Risk Factors
Find information about the risk factors for each asset on Euler

Introduction

This page outlines the main risk parameters on Euler, as determined by . All parameters are
displayed in Table 1 below.

governance

Table 1 | Collateral, borrow, and reserve factor parameter settings on Euler_._

https://github.com/euler-xyz/euler-docs/blob/master/euler-protocol/eulers-default-parameters/broken-reference/README.md

Token
collateral
Factor

borrowF
actor

reserveF
actor

borrowIs
olated

crossBor
row

InterestR
ateModel

Uniswa
V3 fee
tier (%)

RAD 0 0.28 0 true false Default 0.3

USDT 0.9 0.94 0.05 false true USDT
Chainli
k

WSTET
H

0.85 0.89 0.1 false true Mega
Chainli
k

STETH 0.87 0.91 0.1 false true Lido
Chainli
k

LUSD 0 0.7 0.15 false true Stable
Chainli
k

FLX 0 2.5e-10 0.23 true false Default 0.3

ALCX 0 0.28 0.23 true false Default
Chainli
k

ANT 0 0.28 0.23 true false Default
Chainli
k

APE 0 0.28 0.23 true false Default
Chainli
k

BABL 0 0.28 0.23 true false Default 0.3

BADGE
R

0 0.28 0.23 true false Default
Chainli
k

BANK 0 0.28 0.23 true false Default 0.3

BED 0 0.28 0.23 true false Default 0.3

BRIGHT 0 0.28 0.23 true false Default 0.3

CARD 0 0.28 0.23 true false Default 0.3

CNV 0 0.28 0.23 true false Default 1

CTX 0 0.28 0.23 true false Default 1

CVXCR
V

0 0.28 0.23 true false Default 0.3

DFI 0 0.28 0.23 true false Default 1

DPI 0 0.28 0.23 true false Default
Chainli
k

DPX 0 0.28 0.23 true false Default 1

DYDX 0 0.28 0.23 true false Default 0.3

ENJ 0 0.28 0.23 true false Default 0.3

ETH2X-
FLI

0 0.28 0.23 true false Default 0.3

EXRD 0 0.28 0.23 true false Default 1

FLOAT 0 0.28 0.23 true false Default 0.3

FNT 0 0.28 0.23 true false Default 1

FPIS 0 0.28 0.23 true false Default 1

FTT 0 0.28 0.23 true false Default
Chainli
k

FXS 0 0.28 0.23 true false Default
Chainli
k

GAMMA 0 0.28 0.23 true false Default 0.3

GFI 0 0.28 0.23 true false Default 1

GOHM 0 0.28 0.23 true false Default 0.3

GRT 0 0.28 0.23 true false Default
Chainli
k

GTC 0 0.28 0.23 true false Default
Chainli
k

GUSD 0 0.28 0.23 true false Default
Chainli
k

IDLE 0 0.28 0.23 true false Default 0.3

ILV 0 0.28 0.23 true false Default
Chainli
k

IMX 0 0.28 0.23 true false Default 0.3

INDEX 0 0.28 0.23 true false Default 1

KP3R 0 0.28 0.23 true false Default 1

LOOKS 0 0.28 0.23 true false Default 0.3

LQTY 0 0.28 0.23 true false Default 0.3

LRC 0 0.28 0.23 true false Default
Chainli
k

LYXE 0 0.28 0.23 true false Default 0.3

MPL 0 0.28 0.23 true false Default 0.3

MTA 0 0.28 0.23 true false Default 0.3

MVI 0 0.28 0.23 true false Default 0.3

NEXO 0 0.28 0.23 true false Default 0.3

NMR 0 0.28 0.23 true false Default
Chainli
k

OGN 0 0.28 0.23 true false Default
Chainli
k

OS 0 0.28 0.23 true false Default 1

QNT 0 0.28 0.23 true false Default 0.3

QSP 0 0.28 0.23 true false Default 0.3

RENDO
GE

0 0.28 0.23 true false Default 0.3

REQ 0 0.28 0.23 true false Default
Chainli
k

RETH 0 0.28 0.23 true false Default 0.05

RLC 0 0.28 0.23 true false Default
Chainli
k

RNDR 0 0.28 0.23 true false Default 1

RPL 0 0.28 0.23 true false Default 0.3

SETH2 0 0.28 0.23 true false Default 0.3

SLP 0 0.28 0.23 true false Default 0.3

SOCKS 0 0.28 0.23 true false Default 1

SOS 0 0.28 0.23 true false Default 1

SSV 0 0.28 0.23 true false Default 0.3

STG 0 0.28 0.23 true false Default 0.3

SUSD 0 0.28 0.23 true false Default
Chainli
k

TCR 0 0.28 0.23 true false Default 0.3

TON 0 0.28 0.23 true false Default 1

TORN 0 0.28 0.23 true false Default 1

TRDL 0 0.28 0.23 true false Default 1

TRYB 0 0.28 0.23 true false Default 0.3

UBI 0 0.28 0.23 true false Default 1

VEGA 0 0.28 0.23 true false Default 0.3

WAMPL 0 0.28 0.23 true false Default 0.3

WILD 0 0.28 0.23 true false Default 0.3

WNXM 0 0.28 0.23 true false Default
Chainli
k

WOO 0 0.28 0.23 true false Default 0.3

XCN 0 0.28 0.23 true false Default
Chainli
k

XMON 0 0.28 0.23 true false Default 1

YVBOO
ST

0 0.28 0.23 true false Default 1

AGEUR 0 0.5 0.23 false true Stable 0.05

CVX 0 0.5 0.23 false true Major
Chainli
k

OHM 0 0.5 0.23 true false OHM
Chainli
k

PERP 0 0.5 0.23 false true Major
Chainli
k

RBN 0 0.5 0.23 false true Major 1

SHIB 0 0.5 0.23 false true Major
Chainli
k

OSQTH 0 0.56 0.23 false true Major 0.3

AXS 0 0.66 0.23 false true Major
Chainli
k

ENS 0 0.66 0.23 false true Major
Chainli
k

MATIC 0 0.66 0.23 false true Major
Chainli
k

MKR 0 0.66 0.23 false true Major Chainli
k

1INCH 0 0.7 0.23 true false Major
Chainli
k

AAVE 0 0.7 0.23 true false Major
Chainli
k

BAL 0 0.7 0.23 true false Major
Chainli
k

BUSD 0 0.7 0.23 true false Major
Chainli
k

COMP 0 0.7 0.23 true false Major
Chainli
k

CRV 0 0.7 0.23 true false Major
Chainli
k

FRAX 0 0.7 0.23 true false Major
Chainli
k

LDO 0 0.7 0.23 true false Major
Chainli
k

MIM 0 0.7 0.23 true false Major
Chainli
k

RAI 0 0.7 0.23 true false Major
Chainli
k

SNX 0 0.7 0.23 true false Major
Chainli
k

YFI 0 0.7 0.23 true false Major
Chainli
k

LINK 0 0.76 0.23 false true Major
Chainli
k

UNI 0 0.76 0.23 false true Major
Chainli
k

DAI 0.85 0.88 0.23 false true Stable
Chainli
k

WBTC 0.88 0.91 0.23 false true Mega
Chainli
k

WETH 0.88 0.91 0.23 false true Default Pegged

USDC 0.9 0.94 0.23 false true Stable
Chainli

k

Note: the Collateral Factor of the lent asset(s) is multiplied by the Borrow Factor of the borrowed asset(s) to
arrive at the final factor.

For example, if you lend 1,000 USD worth of USDC, you can borrow UNI in line with a final factor of 0.648
(0.90 x 0.72). Hence, 648 USD worth of UNI.

Alternatively, if you lend 500 USD worth of USDC and 500 USD worth of WETH, your risk-adjusted
collateral value is (500 x 0.90) + (500 x 0.88) = 890 USD. If you were to borrow UNI, you could borrow 890 x
0.72 = 640.8 USD worth of UNI.

Note that if you borrowed less UNI, for example 500 USD worth, you could still borrow additional UNI or a
cross tier asset like LINK against your risk-adjusted collateral before hitting the threshold.

Lastly, please note that the risk factors list will be periodically updated. If a token/market is activated on the
DApp but not listed, please check back later for an updated list.

Euler Governance

Getting Started

Introduction

The code for Euler Protocol is controlled by a decentralised community through on-chain governance on the
Ethereum network. The community are holders of a protocol-native governance token called
(pronounced 'oil'), which enables the community to effect change over the Euler Protocol code. Tokens can
be used to propose upgrades to the protocol or vote on the proposals of others.

EUL

Protocol Code

Governance can vote to effect change over the Euler Protocol for parameters such as:

1. Default isolated tier borrow factor

2. Collateral and borrow factors of specific assets

3. Inclusion of an asset in the cross and collateral tiers

4. Change in choice of risk parameters and general methodology

On-Chain governance, allows unique features such as delegated voting and proposition powers, as well as
protocol (and governance configuration) updates via a time lock executor. This ensures the protocol can
adapt to evolving market conditions, as well as upgrade core parts of the protocol over time.

On the other hand, for off-chain governance, there is no code to review or implement as such. It is mainly a
call for the Euler Foundation to carry out an action. Issue a grant, or pay a bill, for example. Thus mainly
used to aid Euler in making difficult decisions in collaboration with the community.

Euler protocol uses the governance interface for on-chain voting. on the other hand is an
interface use for off-chain or 'gasless' voting.

Tally Snapshot

Process

The is documented on the Governance Forum.General Governance Process

The flow of the governance process is as follows:

https://github.com/euler-xyz/euler-docs/blob/master/euler-governance/getting-started/broken-reference/README.md
https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://snapshot.org/#/eulerdao.eth/proposal/0x3b4b7e79c40df6860e7d612bdccc4969753e283dfd84673dc5fc4d201abcb317
https://forum.euler.finance/t/welcome-to-the-euler-governance-forum/7

1. Discuss the idea/draft proposal in the #governance channelEuler Discord

2. Draft & create a on Governance forum for further feedbacksRFC (Request For Comment) Proposal

3. Contact a forum moderator to create a on the Governance forumeIP (Euler Improvement Proposal)

4. eIP created on (off-chain voting)​Snapshot
This is a necessary step for all types of proposals, and execution will be carried out by Euler

Foundation if the proposal is successful.

5. Optional step — eIP created on (on-chain voting)Tally
If and only if the proposal includes changes to the smart contract, the proposal will be voted on Tally
after Snapshot voting. Execution will be targeting Euler protocol smart contract if the proposal is
successful.

It is noteworthy that not all off-chain proposals that are either binding or non-binding on the protocols smart
contracts will end up having an on-chain proposal depending on the outcome of the off-chain 'gas-less'
voting and for gas cost savings. On the other hand, not all on-chain proposals will require an off-chain
counterpart.

Depending on the outcome of an off-chain voting process, an on-chain proposal might be created which will
be executed against a target protocol smart contract if successful.

If an off-chain proposal requires an on-chain proposal that will be executed against a protocol smart
contract, then the general flow could be as follows:

Creation of a formal Idea/Proposal on Governance forum for discussion → Proposal created on Snapshot
(off-chain proposal creation) → Off-Chain Voting → (if on-chain governance is required) eIP (Euler
Improvement Proposal) creation on Governance forum by forum moderator → eIP created on Tally (on-chain
proposal creation) → On-Chain Voting (and Execution on target Euler protocol smart contract if successful).

Idea

A great place to start a discussion on a potential governance proposal is the idea section on the forum
website. If you feel confident that your idea is relevant to the community and is well-formulated, head over to
the Governance Forum to begin a discussion with the community around your idea (following the process
described on the).forum

Once a discussion / commenting begins around your idea, be proactive with the community and be open to
suggestions. It typically takes a week for the request for comments to mature before it becomes an eIP.

Governance Proposal

If the discussion is well-formulated and the community has a clear understanding of the proposal and
supports your idea, (for on-chain proposals) it will be moved by a moderator to the governance category as
an eIP: Euler Improvement Proposal. Once the proposal has an eIP, an on or off-chain proposal can be
created on the or on the .Tally governance dashboard Snapshot governance dashboard

A Tally or Snapshot proposal does not always need to be created by the original eIP author / proposer, it can
be posted by someone else or by on of the delegates in case the minimum threshold of EUL is not being
met.

https://discord.gg/CdG97VSYGk
https://forum.euler.finance/c/rfc-request-for-comment/11
https://forum.euler.finance/c/eip/5
https://snapshot.org/#/eulerdao.eth
https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://forum.euler.finance/t/welcome-to-the-euler-governance-forum/7
https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://snapshot.org/#/eulerdao.eth/proposal/0x3b4b7e79c40df6860e7d612bdccc4969753e283dfd84673dc5fc4d201abcb317

A good governance proposal example can be found here: .eIP: Promote WBTC to collateral tier 3

Stay updated by subscribing to the and follow the !community newsletter Twitter Page

https://forum.euler.finance/t/eip-1-promote-wbtc-to-collateral-tier/27
https://newsletter.euler.finance/
https://twitter.com/eulerfinance

Phases
Learn more about the Euler Governance launch phases

Governance Launch Phases

Introduction

EulerDAO will kick off in three phases for a guarded launch towards full decentralisation of the Euler
protocol. Each phase is described below.

The EulerDAO uses the (version 4.6.0) for governance (as well
as the EUL token contract). It is a governance protocol — similar to the one Compound uses — where
delegates vote on active proposals to make changes to the EulerDAO and Euler protocol.

OpenZeppelin Governance smart contracts

Euler uses the Tally governance dashboard application to manage the governance process. Through Tally,
you can set up your wallet to become a delegate, create on-chain proposals, vote on active proposals,
discover delegates in the community, and delegate your voting power to a community member.

Phase 1

The first phase of the launch will be such that actions to be performed directly on the Euler protocol smart
contracts will be executed by the Euler team on behalf of the community. In this case, all on-chain
governance proposals will point to or target the executeProposal(string description, bytes

proposalData) function in a (in place of the Euler protocol smart

contracts).

stub governance smart contract

Should the proposal become successful and executed, the target function will then be executed (via the
TimelockController controller smart contract). Once executed, it will emit the proposal description string and
proposal transaction data, which will then be validated by the Euler team and executed against the Exec
module via the Euler multisig.

Hence, the governorOnly() modifier in the Euler Governance module smart contract will be checking

that the caller of its functions is the Euler mulisig and not the TimelockController smart contract.

To create the proposal transaction data, we have implemented a which will help the proposer to auto
generate this depending on what actions should be executed.

tool

The proposer can select a token from the dropdown token list (this will auto populate the fields with the
current configuration for the token/market on Euler), the proposer can then make modifications and generate
the proposal transaction hex to be executed via the Euler Exec module (batchDispatch() function) and

use this hex data as the input to the target function in the when creating a
proposal on Tally.

stub governance smart contract

Examples of the kinds of decisions token holders might vote on include proposals to modify:

https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/governance
https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328
https://proposal.euler.finance/
https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328

The tier of an asset

Collateral and borrow factors

Price oracle parameters

Reactive interest rate model parameters

Reserve factors

Phase 2

In the second phase, the governor admin for the Euler Governance module will switch from the Euler
multisig to the TimelockController smart contract. Hence, the governorOnly() modifier in the Euler

Governance module smart contract will be checking that the caller of its functions is the TimelockController
smart contract.

In this case, proposals created via the Tally governance dashboard will need to target the Euler
 directly. Successful proposals which receive a higher number of votes in support will then be

executed without the control of the Euler team.

Governance
module

During execution, the TimelockController smart contract will call the target function in the Euler Governance
module as specified within the on-chain proposal. Proposers will be able to add a batch of actions /
functions to be executed within the Euler Governance module into a single on-chain proposal as well.

Phase 3

In this phase, the Installer Admin will also be switched to the TimelockController smart contract.

Not only giving the community control over the Governance module for asset configuration modifications but
also full control over the protocol including the installer module. This module is used to bootstrap install the
rest of the modules, and can later on be used to upgrade modules to add new features and/or fix bugs.

Euler's Governance Proposal Creation Tool for Phase 1

Introduction

The first phase of Euler’s DAO / Governance launch will be where actions to be performed directly on the
Euler protocol smart contracts will be performed or executed by the Euler team on behalf of the community.
In this case, all on-chain governance proposals will point to or target a function in a

 (in place of the Euler protocol smart contracts).
stub governance smart

contract

Should the proposal become successful and executed, the target function will then be executed (via the
TimelockController controller smart contract. It will emit the proposal description string and proposal
transaction hex data, which will then be validated by the Euler team and executed against the Exec

module via the Euler multisig (on OpenZeppelin Defender).

Hence, the governorOnly() modifier in the will be checking that the caller of

its functions is the Euler mulisig and not the TimelockController smart contract of the DAO.

Euler Governance module

https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Governance.sol
https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/modules/Governance.sol

To create the proposal transaction data, we have implemented a which will help the proposal creator to
auto-generate it depending on what actions should be executed. The proposal transaction data is simply an
encoded version of the on-chain transaction to the Exec module’s batchDispatch function.

tool

The rest of the article will describe the process of creating the proposal transaction data on Euler’s
governance proposal creation tool and using the generated proposal transaction data to create an on-chain
proposal on the governance dashboard.Tally

Section 1. Creating the proposal transaction data for Euler’s Exec Module

Step 1

Navigate to the .proposal transaction data creation tool

The web application should look like the following image:

Step 2

The tool requires MetaMask to be installed in your browser. Switch your MetaMask wallet to mainnet.

https://proposal.euler.finance/
https://www.tally.xyz/
https://proposal.euler.finance/

The tool currently supports the Ethereum Mainnet and our Goerli testnet Exec modules. It will create the
appropriate transaction data to be executed depending on the selected network.

Step 3

At the top left of the window, we have a text field for proposal description and below that we have a
dropdown menu representing a list of tokens, e.g., USDC, DAI, etc.

At the left of the window, under the token list, we have a set of dropdown menus and text fields which will be
autopopulated with the current token configurations (if the token has an activated market on Euler).

To create the proposal transaction data, the proposer needs to enter a proposal description and then select a
token from the token list. Once selected, the rest of the fields will be automatically populated with the current
configuration of the token or market on Euler if it has an activated market.

The image below shows the proposal description and the fields on the left populated with the current market
configuration for USDC on Euler:

Step 4

The proposer can then make modifications and generate the proposal transaction hex data to be executed
via the Euler Exec module (batchDispatch() function) and use this hex data as the input to the target

function in the when creating a proposal on Tally (this is described in
Section 2 below).

stub governance smart contract

For example purposes, let’s change the borrow factor of USDC to 0.6. To do this, we simply change the
current collateral factor to 0.6 in the text field on the left side of the screen for collateral factor and click on
CREATE PROPOSAL DATA . Once we do this, we should see the markdown table showing the changes

we want to make to the asset. We will also see the batch items Hex transaction data which we need for our
on-chain governance proposal on Tally.stub governance smart contract

Note: This process can be repeated for multiple tokens and configurations (or multiple configurations of the
same token). They will be added in a batch and encoded to form the transaction data for the batchDispatch
functionality in the Euler Exec module.

For example, let us select DAI from the token list and change the borrow factor of DAI to 0.3. Again, the
fields are automatically populated when we select DAI and when we change the borrow factor to 0.3 and
click on CREATE PROPOSAL DATA . The list of configuration updates is updated to reflect the change we

are making to DAI, while the USDC update information still remains. The transaction hex is also updated.

https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328
https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328

Step 5

To validate the updates we have selected, we can copy the auto-generated hex under batch items hex TX
data (under batch items, which is under proposal description) and click on DEBUG TX HEX DATA and

paste the copied hex into the text field.

The tool should also decode the hex and show us a markdown with the updates the Euler team will be
applying to the selected tokens once the proposal gets executed. The Euler team will also follow this
process to make sure that the proposal description reflects the updates to be made before executing the
transaction in the Exec module on behalf of the community.

As shown in the image above, the hex data is decoded to show the updates we selected to be applied to
DAI and USDC. There is a close button at the bottom right of the window to close the debug modal and
return to the main page.

Once you get to this point, you now have your proposal transaction data which you can use to create your
on-chain proposal on Tally. After the voting period, if successfully executed, the decoded hex data will be
submitted to OpenZeppelin Defender for the Euler team to execute on behalf of the community.

Please let us know if you have any questions or feedback while using the tool in our Discord Governance
channel.

Section 2.Using the Auto-Generated transaction data for Euler’s Exec Module to Create an on-chain
proposal for the DAO on Tally

At this point, we assume you now have the proposal transaction hex data needed for the Euler Exec
module’s batchDispatch function. And you want to create the on-chain proposal for members of the
community (and delegates) to vote on. If so, please read on!

Below, we will describe the steps required to accomplish this goal.

Step 1

Head over to the EulerDAO dashboard on Tally and connect your MetaMask wallet.

Step 2

Click on Create new proposal at the right corner of the window.

It should then take you to the proposal creation window below.

Click on Continue to move onto the next step (Name your proposal).

Step 3

Enter a proposal title and description and click Continue .

Step 4

In the next section, you will be required to specify the governance proposal actions, i.e., target smart
contract, target function and parameters. The Tally dashboard allows you to specify multiple actions in a
single proposal which will be called/executed if the proposal is successful and executed.

To add the proposal transaction hex from Section 1 and set the governance
as the target smart contract, we will click on Add custom action => enter the

 address as the target smart contract. Then select the executeProposal function from the

dropdown menu under contract method as the target function in the target smart contract. Here is the

interesting part: enter the required parameters, i.e., proposal description string and the proposalData which
is your proposal transaction hex data from Section 1.

stub governance smart contract
stub governance smart

contract

https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328
https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328

Step 5

Once done, click continue and review the proposal. Once you are happy, you can click Submit on-

chain which will open a MetaMask pop-up window for you to sign the transaction to create the proposal

on-chain, via the Governance smart contract.

How To

Use the navigation bar on the left side to find guides for all the primary actions and functions required for
governance.

Delegate Voting Power

🚨 If you wish to have a say in governance, you need to delegate your voting power to yourself or someone in
the community. Without performing this action, you will not have any voting power which means being
unable to create proposals or vote on Snapshot (off-chain) and Tally (on-chain). 🚨

About

In summary, delegates are token holders that have completed a one-time setup process (executing the
delegate function of the token to delegate another user or the token holder themselves to enable the
governor contract to determine their voting power). Once you become a delegate, you can vote on active
proposals, and create proposals if you have enough voting power. If you choose not to directly vote on
proposals, you can pass your voting power on to a delegate as well.

The delegate sections below describe the delegation using the EUL token smart contract and via the Tally
Governance Dashboard.

Delegate votes from the sender to a delegatee. Users can delegate to 1 address at a time, and the number
of votes added to the delegatee’s vote count is equivalent to the balance of EUL in the user’s account. Votes
are delegated from the current block and onward, until the sender delegates again, or transfers their EUL.
Delegation can be carried out via the smart contract function described below or via the Tally user interface.

Step-by-step

Voting power delegation can be done via Etherscan, Tally (On-Chain) Governance dashboard or
programmatically.

Etherscan

1. Visit the on Etherscan (shown below).EUL token page

https://etherscan.io/address/0xd9fcd98c322942075a5c3860693e9f4f03aae07b

2. Click on Contract (shown below) to view the EUL token smart contract code and interact with the

contract via etherscan.

3. Click on Write Contract (shown below).

4. Click Connect to Web3 to connect your Metamask wallet which will be used to confirm the delegate

transaction. Once connected, you should see your wallet connect on etherscan as shown below.

5. Click on 3. delegate to expand the delegatee address input text field.

6. Enter the address you wish to delegate your voting power to. This can be your wallet address if you are
self-delegating or another wallet address (i.e., a community member or one of the active delegates on the

.delegates list

7. Click on the blue Write button directly under the delegatee address text field.

8. Finally, regardless of whether you are delegating to yourself or delegating to a delegate, you will be
required to confirm the transaction in your Metamask wallet and this transaction will cost gas.

https://app.euler.finance/delegates

To check the address you are currently delegated to, you can click on the Read Contract tab next to the

Write Contract tab and you will be presented with the window below.

Click on 10. delegates (shown below) and paste your address in the text field and click on Query

and it should show the address you have set as a delegate. If it shows the zero address, (i.e.,
0x00) then it implies you have not delegated to your wallet
or to another address.

You can also check your current voting power.

To do this, click on 14. getVotes (shown below) and paste your address in the text field and click on

Query . If you have self-delegated, your voting power should be equal to the number of tokens you hold. If

you have not self-delegated, or if you have delegated to another address, the query will return zero voting
power.

Tally (On-Chain) Governance Dashboard

1. Visit the on Tally and connect your wallet where you hold EUL
tokens.

Euler on-chain governance dashboard

https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5

2. Click on Delegate vote at the top right corner of the screen.

3. A pop-up window will appear with two options as shown below, i.e., Delegate to self or Delegate to an
address. You can then choose on of these options from the pop up window, either to delegate to yourself or
to another wallet address (i.e., a community member or one of the active delegates on the). By
delegating to self, you retain your voting power. Next time there is an active proposal, you can choose to
vote in any way you choose.

delegates list

If you choose to delegate to an address or delegate, the following screen will be shown instead where you
can enter the address you wish to delegate your voting power to.

https://app.euler.finance/delegates

This will not transfer any of your EUL tokens to the delegate, but rather only delegate all your voting power,
i.e., you will be voting via a delegate or proxy who will be voting on your behalf or representing you at the
polls!

You can always change the delegate later on or delegate to yourself again. This helps to ensure that there is
a good degree of participation from the community on on-chain governance proposals voting.

4. Finally, regardless of whether you are delegating to yourself or delegating to a delegate, you will be
required to confirm the transaction in your Metamask wallet and this transaction will cost gas.

To recap, delegates are token holders that have completed a one-time setup process. Once you become a
delegate, you can then vote on active proposals, and create proposals if you have enough voting power. If
you choose not to directly vote on proposals, you can pass your voting power on to a delegate as we have
seen.

Programmatically

For developers who wish to interact with the EUL token smart contract directly, the EUL contract has a
delegate function defined with examples on how to interact with it shown below.

function delegate(address delegatee)

delegatee : The address the sender wishes to delegate their votes to.

msg.sender : The address of the EUL token holder that is attempting to delegate their votes.

RETURN : No return.

Solidity

EUL eul = EUL(0x123...); // contract address

eul.delegate(delegateeAddress);

Web3.js

const tx = await eul.methods.delegate(delegateeAddress).send({ from: sender });

Write a Proposal

About

This guide describes how to get started with writing a governance proposal, firstly on the forum followed by
a proposal on Snapshot (off-chain) or Tally (on-chain).

Step-by-step

The Request for Comment (RFC) section on the forum is the first step in creating a governance proposal.
Head over to the on the to create a new proposal. Make sure it’s
well-formulated, be proactive with the community, engage with their comments, and be open to suggestions.

RFC section Euler Governance Forum

For consistency, the following proposal structure is advised:

Proposal Structure

Title: [Enter Proposal Title]

Author(s): [enter name(s) of associated authors]

Related Discussions: [paste link here]

Submission Date: [Enter Date]

Body Paragraphs/Sections:

Simple Summary: Give the community a TL;DR on your proposal; no more than 2-3 sentences.

Abstract: Introduce and expand on the proposal. Highlight key points on how the proposal will improve
stakeholder/token holder experience, protocol performance, and the overall implementation process.

Motivation: What problems will this proposal address/solve? What’s the value-add?

Specification: Answer key relevant question to the protocol.

1. What is the link between the eIP author and the asset?

2. Provide a brief description of the asset

3. How is the asset primarily used?

4. Explain why the eIP would benefit Euler’s ecosystem?

5. Where does the asset trade?

6. What are the volumes and market capitalisation?

7. What is the liquidity like in the Uniswap V3 liquidity pool versus ETH?

8. What security/auditing reports have been done?

https://forum.euler.finance/c/rfc-request-for-comment/11
https://forum.euler.finance/

Implementation: Present the implementation of the proposal using .proposal transaction generation tool

Risk Assessment: Give evaluation of the risk parameters involved with the proposal

1. Oracle grading

2. Decentralisation

3. Volatility

4. Liquidity

5. Smart Contract Risk

Voting: Define what a “yes” and “no” vote entails. If there are any Snapshot votes or forum polls
associated with this proposal, please attach them.

Relevant Links: If you used Euler’s oracle grading tool or other tools/references please add it here, eg.
‘Oracle grading tool: ’https://oracle.euler.finance/

A good governance proposal example can be found here: eIP: Promote WBTC to collateral tier

2. Governance Proposal (on-chain or off-chain)

If the RFC is well-formulated and the community has a clear understanding of the proposal and supports
your RFC, it will be moved by a mod to the governance category as an eIP: Euler Improvement Proposal.
Please note that it usually takes a week (7 days) for a proposal to be moved from RFC to the eIP stage.
Once an eIP has been assigned, the proposal can then be created on Snapshot or Tally using this eIP.

A Snapshot or Tally proposal does not always need to be posted by the original eIP author, it can be posted
by someone else or one of the delegates in case the minimum threshold of EUL is not being met. The
proposal on Snapshot or Tally should always have the link to the eIP attached. The parameters of the poll
(Yes, No, different options for values) need to mirror the options discussed in the eIP.

Proposals that are rejected due to invalidity or insufficient support can be resubmitted. Approved proposals
with sufficient support via governance/voting will be implemented by the Euler Foundation.

https://proposal.euler.finance/
https://oracle.euler.finance/
https://forum.euler.finance/t/eip-1-promote-wbtc-to-collateral-tier/27

Create a Tally (On-Chain) Proposal

About

On-Chain governance actions (proposal, voting, etc.) for the Euler protocol can be done via the
governance dashboard (described below). It is only required for proposals proposing changes to the smart
contracts.

Tally

Tally is a web-based governance application focused on enabling on-chain governance. The Tally
governance web application

 bringing all of the proposals and voting for these protocols under a shared user
interface.

provides transparency around the governance of various DeFi protocols, e.g.,
Compound, Uniswap, etc.

Tally empowers user owned governance through a voting dashboard, governance tooling, and real time
research and analysis. Users can use the app to review data on governance systems, active and prior
proposals, and individual delegates or token holders. The platform also enabled direct on-chain voting and
vote delegation, helping users put their governance insights into action. Through integration with the Euler
governance smart contract, Euler token holders can connect their wallets and create proposals, vote,
delegate voting power to a community member, discover other delegates in the community, and more.

The can be accessed on Tally. The guide below demonstrates how to created
an on-chain governance proposal on this dashboard.

Euler Governance Dashboard

Step-by-step

Now that you have created a proposal using and it has passed off-chain voting on
Snapshot, you are ready to make a proposal on Tally for on-chain voting.

proposal.euler.finance

1. Visit the on Tally and connect your wallet where you have EUL
voting power.

Euler on-chain governance dashboard

⚠️ You CANNOT vote if you have not delegated your token., You have to either delegate your token power
to yourself or a delegate in order to vote in governance. Self-delegate or delegate to others .here

2. To create a new proposal, click on Create New Proposal from the DAO home page on Tally as

shown in the top right corner in the image below.

https://docs.tally.xyz/
https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://proposal.euler.finance/
https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://app.euler.finance/delegates

This will then open up the proposal creation dialog taking users through the required steps to create an on-
chain proposal. In the initial step / screen, it will check that the user has enough voting power to meet the
proposal threshold specified within the governance smart contract.

3. The Continue button shown above will become active if the connected wallet has the reqired voting

power that meets the proposal threshold. Upon clicking continue, you will be presented with a form to input
the proposal name and add a short description as shown below.

4. Users will need to add the actions to be executed should the proposal become successful or receive
majority of vote in support. In this step, users can specify the target smart contract address (this should be
the [stub governance smart contract address -]
(https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328
0x8233f21dda26229c8b0586c3c2521be5da0e6328) for phase one of the governance launch),

smart contract function and required function parameters (the hex data for your proposal created on
). Up to a maximum of 10 actions can be added in a single proposal.proposal.euler.finance

You do not need to upload smart contract ABI file as it will be automatically imported from the verified
contract on etherscan.

https://proposal.euler.finance/

5. The following page will then be the review page allowing the user to review and confirm that the specified
actions are correct:

Once confirmed, the proposal will then be created on-chain and if successful, Tally will display the proposal
page with the description and status as it progresses (e.g., pending, active, succeeded, queued, executed).

Full Tally documentation can be accessed online at: . The documentation describes how to navigate
the web app, voting and delegation and creating a Tally account.

Tally

https://docs.withtally.com/

Create a Snapshot (Off-Chain) Proposal

About

Off-chain governance actions (proposal, voting, etc.) for the Euler protocol can be done via the
governance dashboard (described below). For off-chain governance, there is no code to review or
implement as such. It is mainly a call for the Euler Foundation to carry out an action. Issue a grant, or pay a
bill, for example. Thus mainly used to aid Euler in making difficult decisions in collaboration with the
community.

Snapshot

 is an off-chain, 'gasless', multi-governance community polling dashboard used by a number of
decentralised finance projects including the likes of Aave and Balancer.
Snapshot

It provides a simple interface to create governance proposals and lets users vote on them by connecting
their wallets and the governance tokens contained within. However, the actual voting process is conducted
off-chain to save on gas costs and complexity to enable community members 'signal' their preferences on
proposals before any on-chain actions or governance process.

The can be accessed on Snapshot.Euler Governance Dashbaord

Step-by-step

1. Navigate to the home page on Snapshot and connect your wallet where you have EUL voting
power. You should see the Euler space home page as shown below.

Euler

⚠️ You CANNOT vote if you have not delegated your token., You have to either delegate your token power
to yourself or a delegate in order to vote in governance. Self-delegate or delegate to others .here

https://snapshot.org/#/
https://snapshot.org/#/eulerdao.eth
https://snapshot.org/#/eulerdao.eth
https://app.euler.finance/delegates

2. Click on New proposal on the left hand side of the window of the Euler space home page (shown

above). It should open up the new proposal form for you to complete which looks like this:

It will also check your connected wallet for voting power and let you know the current proposal threshold.

3. Enter the proposal title.

4. Enter the proposal description (it can be formatted using markdown) and you can also enter a link at the
bottom pointing to your proposal on the Euler Governance Forum on Discourse.

5. Click on Continue after previewing your proposal and go to the Actions box and select the voting

type and start date of your proposal (end date will be shown based on the current voting period settings).
The proposal creation block number is the snapshot where the voting power of voters will be counted.

6. Click on Publish and your proposal will be created. You will be prompted by Metamask to sign a

transaction which is free and the proposal will then become active on Snapshot.

Full Snapshot documentation can be accessed via the .Snapshot documentation site

https://docs.snapshot.org/

Vote on Tally (On-Chain)

About

This guide describes how to cast a vote on a proposal (on-chain) created on Tally.

Step-by-step

1. Visit the on Tally and connect your wallet where you have EUL
voting power.

Euler on-chain governance dashboard

⚠️ You CANNOT vote if you have not delegated your token., You have to either delegate your token power
to yourself or a delegate in order to vote in governance. Self-delegate or delegate to others .here

2. Click on an active proposal of your choice.

3. Click on Vote

4. When voting, voters have the option to vote for or against a proposal or an abstain vote as shown below.
Voters also have the option of casting a vote with or without a comment for the community.

5. You will be asked to confirm the vote transaction in your wallet after clicking Submit .

Full Tally documentation can be accessed online at: . The documentation describes how to navigate
the web app, voting and delegation and creating a Tally account.

Tally

https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://app.euler.finance/delegates
https://docs.withtally.com/

Vote on Snapshot (Off-Chain)

About

This guide describes how to cast a vote on a proposal (off-chain) created on Snapshot.

Step-by-step

1. Navigate to the home page on Snapshot and connect your wallet where you have EUL voting
power.

Euler

⚠️ You CANNOT vote if you have not delegated your token., You have to either delegate your token power
to yourself or a delegate in order to vote in governance. Self-delegate or delegate to others .here

2. Click on an active proposal of your choice to view more details and see the voting options (as well as
existing votes).

Scrolling down on the page, you will see the current votes, voters (votes and voting power) and the options
available for voting.

3. Select an option to vote on, and your voting power will be displayed and you will be prompted by
Metamask to sign a transaction which is free.

https://snapshot.org/#/eulerdao.eth
https://app.euler.finance/delegates

Full Snapshot documentation can be accessed via the .Snapshot documentation site

https://docs.snapshot.org/

Join the Forum

About

This is dedicated to discussions on Euler governance. Relevant topics include:Euler Forum

Governance proposals

Proposal discussions

Site feedback

Risk assessments

Joining the forum helps members of the community to keep up to date with the latest discussions within the
community around governance proposals as well as engage in the comments section or create your own
proposals.

To access the forum, simply navigate to . You will need to register an account in order to
have full access to the features, e.g., replying to posts and proposals or creating a new proposal for others to
comment on.

forum.euler.finance

If you need technical help, or want a place for more general discussion, visit the official .Euler Discord

Step-by-step

The steps below describe how to join the forum.

1. Click on the Sign Up button at top right corner of the form home page.

2. Complete the account creation form which will pop up upon clicking Sign Up .

3. Once completed, click on Create your account

https://forum.euler.finance/
https://forum.euler.finance/
https://discord.gg/cNg9NhWs

Treasury
Learn more about the Euler Treasury

Introduction

All newly created EUL tokens enter circulation initially via a smart contract called the Euler Treasury. The
treasury is managed by EUL token holders through on-chain and off-chain governance procedures and
overseen by the Euler Foundation.

Address

The address for the treasury is: 0xcAD001c30E96765aC90307669d578219D4fb1DCe .

It can be viewed on Etherscan .here

Multisig

The wallet holding treasury assets is a MultiSig smart contract wallet. A MultiSig wallet requires
multiple private key signatures to authorise transactions. In the case of the Euler Treasury, 4 out 9 signatures
are required for every transaction.

Gnosis Safe

The identity of the signers of the MultiSig cannot be revealed, for obvious security reasons. However,
signers come from a pool of 6 different organisations and, through their contract with the Euler Foundation,
are obliged to carry out the wishes of the Euler DAO.

The MultiSig, along with its signers, are can be viewed publicly here:

.\https://gnosis-safe.io/app/eth:0xcAD001c30E96765aC90307669d578219D4fb1DCe/home

https://etherscan.io/address/0xcAD001c30E96765aC90307669d578219D4fb1DCe
https://gnosis-safe.io/
https://gnosis-safe.io/app/eth:0xcAD001c30E96765aC90307669d578219D4fb1DCe/home

Grants
Learn about how to receive a grant for contributing to EulerDAO

Introduction

To encourage developers to build on top of Euler protocol and help integrate it into the wider DeFi
ecosystem, a portion of the Euler will be allocated to a Grants programme. The purpose of the
grants is to foster the growth of Euler protocol by establishing a culture of community-driven development,
where individuals making improvements to the Euler Protocol get a say in its future.

Treasury

Addresses
Smart contract addresses for Euler Governance (On-Chain)

Networks

The EulerDAO is currently deployed to the following networks:

Mainnet

Contract Address Etherscan Source Code

EUL

0xd9Fcd98c322942

075A5C3860693e9f

4f03AAE07b

​ ​Etherscan ​ ​GitHub

Governance

0xd8E2114f6bCbae

e83CDEB1bD6650a2

8BBcF144D5

​ ​Etherscan ​ ​GitHub

Timelock Controller

0xd4Ee8939a537D9

43a4E46E7Ae04069

C9451d724F

​ ​Etherscan ​ ​GitHub

Stub Target Contract

0x8233f21dda2622

9c8b0586c3c2521b

e5da0e6328

​ ​Etherscan ​ ​GitHub

Rinkeby

https://etherscan.io/address/0xd9Fcd98c322942075A5C3860693e9f4f03AAE07b
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/Eul.sol
https://etherscan.io/address/0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/Governance.sol
https://etherscan.io/address/0xd4Ee8939a537D943a4E46E7Ae04069C9451d724F
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/TimelockController.sol
https://etherscan.io/address/0x8233f21dda26229c8b0586c3c2521be5da0e6328
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/StubEulerGovernance.sol

Contract Address Etherscan Source Code

EUL

0xe013C993A77Cdd

1aC0d8c1B15a6eFf

95EB36c8c6

​ ​Etherscan ​ ​GitHub

Governance

0x681E9cf95e26c6

C2cEF09fdc476C7f

8De6AFf2D5

​ ​Etherscan ​ ​GitHub

Timelock Controller

0x16fBC769237cE1

7830799e6faD9d53

536c3B8389

​ ​Etherscan ​ ​GitHub

Stub Target Contract

0x57848100bc0771

61805fdDcF6D9bA1

5D4aab06d8
​ ​Etherscan ​ ​GitHub

https://rinkeby.etherscan.io/address/0xe013C993A77Cdd1aC0d8c1B15a6eFf95EB36c8c6
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/Eul.sol
https://rinkeby.etherscan.io/address/0x681E9cf95e26c6C2cEF09fdc476C7f8De6AFf2D5
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/Governance.sol
https://rinkeby.etherscan.io/address/0x16fBC769237cE17830799e6faD9d53536c3B8389
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/TimelockController.sol
https://rinkeby.etherscan.io/address/0x57848100bc077161805fdDcF6D9bA15D4aab06d8
https://github.com/euler-xyz/euler-governance/blob/master/contracts/governance/StubEulerGovernance.sol

Parameters
Learn more about the Euler Governance smart contract parameters

Introduction

This page outlines the governance parameters for both on-chain and off-chain governance.

Tally (On-Chain) Governance Parameters

This section outlines the governance parameters for the Euler Governance smart contracts (managed via
). All parameters are displayed in Table 1 below.Tally

Execution Delay, Voting Delay and Voting Period are based on the assumption of a 15 seconds block
creation time on the Ethereum Mainnet.

The governance smart contract inherits functionality from the OpenZeppelin
allowing Voting Delay, Voting Period and Proposal Threshold to be updated through an on-chain
governance proposal and voting process.

GovernorSettings.sol module

Table 1 Euler On-Chain Governance Parameters

Parameter Value

Voting Delay 11520 blocks (2 days)

Voting Period 17280 blocks (3 days)

Execution Delay 172800 seconds (2 days)

Quorum Numerator 3% of EUL Supply

Proposal Threshold 75,000 EUL

When a governance proposal is created, it enters a 2-day review period (i.e., Voting Delay), after which
voting weights are recorded and voting begins.

Voting lasts for 3 days (i.e., Voting Period); once the voting period is over, if quorum was reached (enough
voting power participated) and the majority voted in favour, the proposal is considered successful and can
proceed to be executed 2 days (48 hours) later (i.e., Execution Delay).

Addresses delegated at least 75,000 EUL can create governance proposals having met the Proposal
Threshold.

The image below depicts the on-chain governance phases and durations for each phase:

https://www.tally.xyz/governance/eip155:1:0xd8E2114f6bCbaee83CDEB1bD6650a28BBcF144D5
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorSettings.sol

Snapshot (Off-Chain) Governance Parameters

This section outlines the governance parameters for off-chain governance (managed via). All
parameters are displayed in Table 2 below.

Snapshot

Table 2 Euler Off-Chain Governance Parameters

Parameter Value

Voting Period 6 days

Quorum 1,000 EUL

Proposal Threshold 50 EUL

There is no voting delay or execution delay for the off-chain governance process, given there is no direct
effect on the protocol's smart contracts.

Addresses holding or delegated at least 50 EUL can create governance proposals having met the Proposal
Threshold. With regard to voting power, the delegated voting power or EUL balance at the proposal creation
block number is counted towards voting power. The enabled are erc20-

balance-of and erc20-votes .

Snapshot voting strategies

https://snapshot.org/#/eulerdao.eth/proposal/0x3b4b7e79c40df6860e7d612bdccc4969753e283dfd84673dc5fc4d201abcb317
https://docs.snapshot.org/strategies/what-is-a-strategy

EUL

About
Learn more about the protocol-native governance token of Euler

Introduction

EUL tokens represent voting powers to effect change over the protocol code. EUL is an ERC20 token that
acts as the native governance token of the Euler Protocol. The EUL token address is:
0xd9Fcd98c322942075A5C3860693e9f4f03AAE07b .

More information about EUL can be found on , or .Etherscan CoinMarketCap CoinGecko

Breakdown

The total supply of EUL is 27,182,818 (in homage to Euler’s number,). The initial four-year breakdown of
the EUL total supply is as follows:

e

25% (6,795,705 EUL) to users of the Euler protocol over 4 years (see).Distribution

1% (271,828 EUL) to all users who deposited or borrowed assets on Euler during its soft launch (see
).Epoch0

13.83% (3,759,791 EUL) to the Euler Treasury, unlocked (see).Treasury

25.85% (7,026,759 EUL) to Euler Labs shareholders, with an 18 month linear unlock schedule starting
on 01/01/2022.

9.67% (2,628,170 EUL) to partners of EulerDAO, with an 18 month linear unlock schedule starting on
01/01/2022.

4% (1,087,313 EUL) to Encode, an early project incubator, with a linear 30 month unlock schedule
starting on 01/01/2022.

20.65% (5,613,252 EUL) to employees, advisors and consultants of Euler Labs. Co-founders with a 48
month linear unlock schedule starting on 01/01/2022. All others with individual agreements.

Here is the breakdown:

https://etherscan.io/token/0xd9fcd98c322942075a5c3860693e9f4f03aae07b
https://coinmarketcap.com/currencies/euler-finance/
https://www.coingecko.com/en/coins/euler
https://en.wikipedia.org/wiki/E_(mathematical_constant)

The unlock schedule for different groups is as follows:

Note that the initial allocations may be subject to change as the ecosystem evolves. As EUL is distributed to
users of the protocol they may see fit to vote to alter the EUL Distribution, for example.

The total supply of EUL is fixed for the first 4 years, after which EUL token holders may enact a governance
proposal to inflate the supply by a maximum 2.718% per year. In that scenario, newly minted EUL will enter
circulation via the .Treasury

Circulating Supply

The approximate schedule for the circulating supply of EUL is shown below.

Distribution
Learn more about how EUL is distributed to protocol users to decentralise
governance

Introduction

In order to progressively decentralise governance of the Euler Protocol, EUL will be distibuted to protocol
users over a period of (approx) 4 years. See how much EUL is being distributed today .here

The distribution programme is broken down into cycles called .On Euler, you can be eligible to
receive EUL by either staking your lending positions () to Euler staking contract or by borrowing one
of the incentivized assets, which have been determined either by governance or by the staking
system.

epochs
eTokens

gauge

How it Works

The amount of EUL each borrower receives is proportional to the time-weighted amount of debt they held of
an asset within the epoch. For example, if 50 EUL are to be distributed to the DAI market in epoch 3, and if
Alice borrows 10 DAI for 1 day, and Bob borrows 5 DAI for 2 days, then at the end of the epoch, and after the
merkle-root update (typically takes a few hours), they will both be able to claim an equal share of 25 EUL.

The same logic applies to the lenders that stake their eTokens to one of the Euler staking contracts. For
example, if 50 EUL are to be distributed to the USDC staking pool in epoch 3, and if Alice stakes 10 eUSDC
for 1 day, and Bob stakes 5 eUSDC for 2 days, they will both be able to claim an equal share of 25 EUL at
any time.

How to Claim

Users with an EUL distribution allocation can navigate to the rop right of the UI and click the 'Claim' button.
That will open a dialogue box, showing a user's projected EUL distribution after the current epoch has
completed. This will tick up second-by-second as a user accrues more time-weighted borrowing. The
pending balance below that shows EUL tokens already distributed to the user but which remain in the
distribution smart contract unclaimed. Users can click the Claim button in the bottom right of the dialogue to
transfer those tokens to their wallet.

https://app.euler.finance/gauges
https://docs.euler.finance/developers/getting-started/architecture#etoken

Epochs
Learn more about the phases of the EUL Distribution Programme

Introduction

The EUL Distribution Programme has two phases. Epoch 0, in which governance tokens were distributed to
early protocol users retroactively; and Epoch 1-96, in which governance tokens are distributed on an
ongoing basis to active users of the protocol.

Epoch 0

Epoch 0 covers the 3 month period from 26/11/2021 to 21/03/2022 during which Euler protocol was in a soft-
launch mode. Users were experimenting with the protocol in a risk-minimised manner.

Implementation

Lenders and borrowers using the protocol during this period were allocated a share of 1% of the total
supply of EUL as a one-off retroactive distribution.

The distribution took place as follows:

1. A snapshot of all users on the protocol was taken at block 14,430,000.

2. A total of 271,828 EUL (1% of the total supply) was distributed to anyone interacting with the protocol
upto that point.

3. The distribution amount per address was calculated as follows:

2/3 of the issuance was distributed proportionally based on the time-weighted* average USD value
of the deposits and borrows in the mentioned time frame.

1/3 of the total issuance is distributed evenly amongst all the unique addresses that interacted with
the protocol in the mentioned time frame.

*For simplicity, the accrued interest on deposits and borrows was neglected.

In conclusion, 3407 unique addresses received at least 26.59 EUL tokens plus an individual amount
proportional to the time-weighted average USD value of their deposits and borrows. See for the final
allocations.

here

Epochs 1-96

Epochs 1-96 cover the period from 21/03/2022 to 17/12/2025 during which Euler will progressively
decentralise.

Initial Implementation

https://docs.google.com/spreadsheets/d/1jTECkKiMDMvj1UdaU0AEFfhW8IN0SiBfkNFYpTdWIfo/edit#gid=0

Borrowers using the protocol during this period will be allocated EUL via a rolling merkle distribution. The
amount distributed each epoch will follow a non-linear schedule (see below).

Within each market, borrowers will receive an EUL distribution proportional to their time-weighted borrowing
on that market. The amount of EUL allocated to each market every epoch will be determined by EUL token
holders (see).Gauges

Users will be able to claim their EUL governance tokens after an epoch has completed by using the 'Claim'
button at .https://app.euler.finance/

Updates

eIP 24

The DAO voted to alter the initial EUL Distribution Programme. Beginning epoch 18, the DAO began
allocating a fixed amount of 40,000 EUL each epoch to the to be voted on each epoch by existing
EUL token holders, with an additional 15,000 EUL allocated evenly to lenders of USDC, USDT, and WETH
for a trial period of 6 epochs.

Gauges

eIP29

Creation of an Euler boosted USDC/DAI/USDT pool that is allocated 5,000 EUL as voting incentives every
two weeks. This would run for a trial period of three months.

eIP51

Proposal to change distribution as follows:

9,000 EUL per epoch to stakers of WETH market.

5,000 EUL per epoch to stakers of USDC market.

1,000 EUL per epoch to stakers of USDT market.

8,000 EUL per epoch via gauges to borrowers on each of USDC, WETH, and WStETH

8,000 EUL per epoch shared proportionally among assets with Chainlink oracle

Schedule

The following table outlines the block numbers for previous and forthcoming epochs.

https://app.gitbook.com/o/-MJloiaY-UMc3SjaxzA6/s/-MJlqpE4apPrZurt7BNr/~/changes/8TZLu5aIjb41difegSzr/governance/gauges
https://app.euler.finance/
https://snapshot.org/#/eulerdao.eth/proposal/0x7e65ffa930507d9116ebc83663000ade6ff93fc452f437a3e95d755ccc324f93
https://app.gitbook.com/o/-MJloiaY-UMc3SjaxzA6/s/-MJlqpE4apPrZurt7BNr/~/changes/8TZLu5aIjb41difegSzr/governance/gauges
https://snapshot.org/#/eulerdao.eth/proposal/0x8f046317b789af0de687334356a63005c2e213beb446ff620e43e5f356020c3e
https://snapshot.org/#/eulerdao.eth/proposal/0x551f9e6f3fba50a0fc2c69e361f7a81979189aa7f0ed923a1873bd578896942b

Epoch Block Number EUL Distribution

0 14,430,000 271,828.18

1 14,530,000 36,915.69

2 14,630,000 37,673.39

3 14,730,000 38,531.30

4 14,830,000 39,501.78

5 14,930,000 40,598.43

6 15,030,000 41,836.14

7 15,130,000 43,231.14

8 15,230,000 44,800.97

9 15,330,000 46,564.39

10 15,430,000 48,541.27

11 15,530,000 50,752.38

12 15,630,000 53,219.03

13 15,730,000 55,962.62

14 15,830,000 59,004.03

15 15,930,000 62,362.78

16 16,030,000 66,056.03

17 16,130,000 70,097.30

18 16,230,000 eIP24

19 16,330,000 55000

20 16,430,000 55000

21 16,530,000 55000

22 16,630,000 55000

23 16,730,000 55000

24 16,830,000 eIP29 & eIP51

25 16,930,000 52000

26 17,030,000 52000

27 17,130,000 52000

28 17,230,000 52000

29 17,330,000 47000

30 17,430,000 47000

31 17,530,000 47000

32 17,630,000 47000

33 17,730,000 47000

34 17,830,000 47000

35 17,930,000 47000

36 18,030,000 47000

37 18,130,000 47000

38 18,230,000 47000

39 18,330,000 47000

40 18,430,000 47000

41 18,530,000 47000

42 18,630,000 47000

43 18,730,000 47000

44 18,830,000 47000

45 18,930,000 47000

46 19,030,000 47000

47 19,130,000 47000

48 19,230,000 47000

49 19,330,000 47000

50 19,430,000 47000

51 19,530,000 47000

52 19,630,000 47000

53 19,730,000 47000

54 19,830,000 47000

55 19,930,000 47000

56 20,030,000 47000

57 20,130,000 47000

58 20,230,000 47000

59 20,330,000 47000

60 20,430,000 47000

61 20,530,000 47000

62 20,630,000 47000

63 20,730,000 47000

64 20,830,000 47000

65 20,930,000 47000

66 21,030,000 47000

67 21,130,000 47000

68 21,230,000 47000

69 21,330,000 47000

70 21,430,000 47000

71 21,530,000 47000

72 21,630,000 47000

73 21,730,000 47000

74 21,830,000 47000

75 21,930,000 47000

76 22,030,000 47000

77 22,130,000 47000

78 22,230,000 47000

79 22,330,000 47000

80 22,430,000 47000

81 22,530,000 47000

82 22,630,000 47000

83 22,730,000 47000

84 22,830,000 47000

85 22,930,000 47000

86 23,030,000 47000

87 23,130,000 47000

88 23,230,000 47000

89 23,330,000 47000

90 23,430,000 47000

91 23,530,000 47000

92 23,630,000 47000

93 23,730,000 47000

94 23,830,000 47000

95 23,930,000 47000

96 24,030,000 47000

Gauges
Learn about how Euler enables community-selected markets to receive a governance
token distribution

Introduction

The Euler community helps to determine which markets receive an EUL distribution through the use of
staking gauges. EUL token holders can visit the page on the app UI and stake their tokens against a
particular market to indicate their preference for that market receiving an EUL distribution in future epochs.

Gauge

Good to know

As it stands, users cannot vote on DAO proposals if they participate in gauge voting. Only users with EUL
can direct further EUL emissions. You can remove your EUL at any point from the gauge to distribute further
EUL emissions.

For an emissions schedule of EUL, please see the Epochs page.

https://app.euler.finance/gauges

Staking
Learn about how Euler rewards different assets with lending incentives

Staking on Euler is based on Synthetix’s staking contracts. This is an overhaul to Euler’s gauge system,
which thanks to is modified from its previous iteration coming into effect with the arrival of eIP51 Epoch 24.

To stake an asset and receive some of the EUL being distributed, users should stake their into the
staking contract.

eTokens

Should you please, you can immediately unstake your tokens at any time and the accrued EUL earnings will
be instantly claimable. There is no lockup period for this staking process.

According to , the DAO has made the decision to keep the staking rewards program running
indefinitely, unless another vote is held to terminate the program. The staking contracts will receive EUL
tokens distributed in the following manner:

eIP51

9,000 EUL per epoch to stakers of WETH market.

5,000 EUL per epoch to stakers of USDC market.

1,000 EUL per epoch to stakers of USDT market.

Considerations

While these eTokens are held in the staking contract, users should be aware that they cannot collateralise
loans. You cannot borrow against tokens that are earning these EUL in the staking contract.

Make sure when depositing assets into the staking contract that if you have any outstanding liabilities, they
are adequately collateralised AFTER you have deposited your USDC/USDT/WETH. Your account will be
flagged for otherwise.liquidation

https://snapshot.org/#/eulerdao.eth/proposal/0x551f9e6f3fba50a0fc2c69e361f7a81979189aa7f0ed923a1873bd578896942b
https://docs.euler.finance/eul/distribution-1
https://docs.euler.finance/developers/getting-started/architecture#etoken-less-than-greater-than-dtoken-symmetry
https://snapshot.org/#/eulerdao.eth/proposal/0x551f9e6f3fba50a0fc2c69e361f7a81979189aa7f0ed923a1873bd578896942b
https://docs.euler.finance/getting-started/white-paper#liquidations

Developers

Getting Started

Contract Integration Guide
Find out how to start working with the Euler smart contracts

Modules

The Euler protocol is a collection of smart contracts connected together with a module system. Each module
handles specific areas of the protocol, so depending on what you want to do, you will interact with several
different contract addresses.

Some modules are global, for example:

: Activating markets, enter/exiting markets, and querying various market-related information.markets

: Batch requests, liquidity deferrals (ie, flash loans)exec

: Seizure of assets for users in violationliquidation

Other modules are asset-specific:

: ERC20-compatible tokens that represent assetseTokens

: ERC20-compatible tokens that represent liabilitiesdTokens

Deposit and withdraw

In order to invest an asset to earn interest, you need to deposit into an eToken.

https://docs.euler.finance/developers/getting-started/contract-reference#ieulermarkets
https://docs.euler.finance/developers/getting-started/contract-reference#ieulerexec
https://docs.euler.finance/developers/getting-started/contract-reference#ieulerliquidation
https://docs.euler.finance/developers/getting-started/contract-reference#ieuleretoken
https://docs.euler.finance/developers/getting-started/contract-reference#ieulerdtoken

// Approve the main euler contract to pull your tokens:

IERC20(underlying).approve(EULER_MAINNET, type(uint).max);

// Use the markets module:

IEulerMarkets markets = IEulerMarkets(EULER_MAINNET_MARKETS);

// Get the eToken address using the markets module:

IEulerEToken eToken = IEulerEToken(markets.underlyingToEToken(underlying));

// Deposit 5.25 underlying tokens (assuming 18 decimal places)

// The "0" argument refers to the sub-account you are depositing to.

eToken.deposit(0, 5.25e18);

eToken.balanceOf(address(this));

// -> internal book-keeping value that doesn't increase over time

eToken.balanceOfUnderlying(address(this));

// -> 5.25e18

// ... but check back next block to see it go up (assuming there are borrowers)

// Later on, withdraw your initial deposit and all earned interest:

eToken.withdraw(0, type(uint).max);

Borrow and repay

If you would like to borrow an asset, you must have sufficient collateral, and be "entered" into the collateral's
market.

// Use the markets module:

IEulerMarkets markets = IEulerMarkets(EULER_MAINNET_MARKETS);

// Approve, get eToken addr, and deposit:

IERC20(collateral).approve(EULER_MAINNET, type(uint).max);

IEulerEToken collateralEToken = IEulerEToken(markets.underlyingToEToken(collateral));

collateralEToken.deposit(0, 100e18);

// Enter the collateral market (collateral's address, *not* the eToken address):

markets.enterMarket(0, collateral);

// Get the dToken address of the borrowed asset:

IEulerDToken borrowedDToken = IEulerDToken(markets.underlyingToDToken(borrowed));

// Borrow 2 tokens (assuming 18 decimal places).

// The 2 tokens will be sent to your wallet (ie, address(this)).

// This automatically enters you into the borrowed market.

borrowedDToken.borrow(0, 2e18);

borrowedDToken.balanceOf(address(this));

// -> 2e18

// ... but check back next block to see it go up

// Later on, to repay the 2 tokens plus interest:

IERC20(borrowed).approve(EULER_MAINNET, type(uint).max);

borrowedDToken.repay(0, type(uint).max);

Flash loans

Euler has flash loans built-in as an integral component of the protocol. There are three ways to take a flash
loan, a low-level Euler-specific way, a way that uses an compatible flash-loan adaptor, and a gas-
efficient direct interface.

EIP-3156

Low-level Flash Loans

The low-level way to take a flash loan is to defer the liquidity check for your account. The Euler contract will
call back into your contract, where you can perform operations like borrow() without worrying about

liquidity violations. As long as your callback leaves the account in a non-violating state, the transaction will
complete successfully.

Since Euler only charges interest for a loan when it is held for a non-zero amount of time, this results in fee-
less flash loans.

Here is an example contract that demonstrates this:

https://eips.ethereum.org/EIPS/eip-3156

contract MyFlashLoanContract {

 struct MyCallbackData {

 uint whatever;

 }

 function somethingThatNeedsFlashLoan() {

 // Setup whatever data you need

 MyCallbackData memory data;

 data.whatever = 1234;

 // Disable the liquidity check for "this" and call-back into onDeferredLiquidityCheck

 IExec(exec).deferLiquidityCheck(address(this), abi.encode(data));

 }

 function onDeferredLiquidityCheck(bytes memory encodedData) external override {

 MyCallbackData memory data = abi.decode(encodedData, (MyCallbackData));

 // Borrow 10 tokens (assuming 18 decimals):

 IEulerDToken(borrowedDToken).borrow(0, 10e18);

 // ... do whatever you need with the borrowed tokens ...

 // Repay the 10 tokens:

 IERC20(borrowed).approve(EULER_MAINNET, type(uint).max);

 IEulerDToken(borrowedDToken).repay(0, 10e18);

 }

}

encodedData is a pass-through parameter that lets you transfer data to your callback without requiring

storage writes.

EIP-3156 Flash Loans

There is also an adaptor smart contract that exposes Euler's flash loan functionality as an
compatible API.

EIP-3156

The smart contract addresses are: , .mainnet goerli

Examples of how to use the adaptor can be found in the EIP documentation, as well as the .
The fee value is always 0.

Euler test suite

Gas-Efficient Direct Flash Loans

As of , DTokens also support a flashLoan method. In most cases, this is now the recommended

way to perform a pure flash loan. It is simpler and consumes less gas than either of the above methods.

eIP-14

To use this, your contract should implement the IFlashLoan interface:

https://eips.ethereum.org/EIPS/eip-3156
https://etherscan.io/address/0x07df2ad9878F8797B4055230bbAE5C808b8259b3
https://goerli.etherscan.io/address/0xA119432BE658449C315E0a1054eab8a9057DE280
https://github.com/euler-xyz/euler-contracts/blob/master/contracts/test/FlashLoanAdaptorTest.sol
https://forum.euler.finance/t/eip-14-contract-upgrades/305

interface IFlashLoan {

 function onFlashLoan(bytes memory data) external;

}

When you wish to perform a flash loan, your contract should invoke the flashLoan function on the

DToken that corresponds to the asset you wish to borrow:

function flashLoan(uint amount, bytes calldata data) external;

The DToken contract will transfer the requested amount of tokens to your contract address (decimals are

the same as in the external token contract -- no normalisation needed), and then invoke your contract's
onFlashLoan function. The data parameter you specify is passed to the callback unchanged, which

allows you to pass extra data to your contract without requiring expensive storage writes.

Note that any address could call onFlashLoan on your contract at any time. You may want to ensure that

msg.sender is the Euler contract's address, or use some other kind of authentication scheme.

Your contract is expected to repay amount back to the Euler contract (which will be msg.sender) within

the onFlashLoan function.

Here is an example:

import "IEuler.sol";

contract MyContract {

 function myFunction() external {

 require(msg.sender == myAdminAddress, "not allowed");

 IEulerDToken dToken = IEulerDToken(markets.underlyingToDToken(underlying));

 dToken.flashLoan(amount, abi.encode(underlying, amount));

 }

 function onFlashLoan(bytes memory data) external {

 require(msg.sender == EulerAddrsMainnet.euler, "not allowed");

 (address underlying, uint amount) = abi.decode(data, (address, uint));

 // ...

 IERC20(underlying).transfer(msg.sender, amount); // repay

 }

}

Contract Reference

IEuler

Main storage contract for the Euler system

moduleIdToImplementation

Lookup the current implementation contract for a module

function moduleIdToImplementation(uint moduleId) external view returns (address);

Parameters:

moduleId: Fixed constant that refers to a module type (ie MODULEID__ETOKEN)

Returns:

An internal address specifies the module's implementation code

moduleIdToProxy

Lookup a proxy that can be used to interact with a module (only valid for single-proxy modules)

function moduleIdToProxy(uint moduleId) external view returns (address);

Parameters:

moduleId: Fixed constant that refers to a module type (ie MODULEID__MARKETS)

Returns:

An address that should be cast to the appropriate module interface, ie
IEulerMarkets(moduleIdToProxy(2))

AssetConfig

Euler-related configuration for an asset

struct AssetConfig {

 address eTokenAddress;

 bool borrowIsolated;

 uint32 collateralFactor;

 uint32 borrowFactor;

 uint24 twapWindow;

}

IEulerMarkets

Activating and querying markets, and maintaining entered markets lists

activateMarket

Create an Euler pool and associated EToken and DToken addresses.

function activateMarket(address underlying) external returns (address);

Parameters:

underlying: The address of an ERC20-compliant token. There must be an initialised uniswap3 pool for
the underlying/reference asset pair.

Returns:

The created EToken, or the existing EToken if already activated.

activatePToken

Create a pToken and activate it on Euler. pTokens are protected wrappers around assets that prevent
borrowing.

function activatePToken(address underlying) external returns (address);

Parameters:

underlying: The address of an ERC20-compliant token. There must already be an activated market on
Euler for this underlying, and it must have a non-zero collateral factor.

Returns:

The created pToken, or an existing one if already activated.

underlyingToEToken

Given an underlying, lookup the associated EToken

function underlyingToEToken(address underlying) external view returns (address);

Parameters:

underlying: Token address

Returns:

EToken address, or address(0) if not activated

underlyingToDToken

Given an underlying, lookup the associated DToken

function underlyingToDToken(address underlying) external view returns (address);

Parameters:

underlying: Token address

Returns:

DToken address, or address(0) if not activated

underlyingToPToken

Given an underlying, lookup the associated PToken

function underlyingToPToken(address underlying) external view returns (address);

Parameters:

underlying: Token address

Returns:

PToken address, or address(0) if it doesn't exist

underlyingToAssetConfig

Looks up the Euler-related configuration for a token, and resolves all default-value placeholders to their
currently configured values.

function underlyingToAssetConfig(address underlying) external view returns (IEuler.AssetConfig

Parameters:

underlying: Token address

Returns:

Configuration struct

underlyingToAssetConfigUnresolved

Looks up the Euler-related configuration for a token, and returns it unresolved (with default-value
placeholders)

function underlyingToAssetConfigUnresolved(address underlying) external view returns (IEuler.A

Parameters:

underlying: Token address

Returns:

config: Configuration struct

eTokenToUnderlying

Given an EToken address, looks up the associated underlying

function eTokenToUnderlying(address eToken) external view returns (address underlying);

Parameters:

eToken: EToken address

Returns:

underlying: Token address

dTokenToUnderlying

Given a DToken address, looks up the associated underlying

function dTokenToUnderlying(address dToken) external view returns (address underlying);

Parameters:

dToken: DToken address

Returns:

underlying: Token address

eTokenToDToken

Given an EToken address, looks up the associated DToken

function eTokenToDToken(address eToken) external view returns (address dTokenAddr);

Parameters:

eToken: EToken address

Returns:

dTokenAddr: DToken address

interestRateModel

Looks up an asset's currently configured interest rate model

function interestRateModel(address underlying) external view returns (uint);

Parameters:

underlying: Token address

Returns:

Module ID that represents the interest rate model (IRM)

interestRate

Retrieves the current interest rate for an asset

function interestRate(address underlying) external view returns (int96);

Parameters:

underlying: Token address

Returns:

The interest rate in yield-per-second, scaled by 10**27

interestAccumulator

Retrieves the current interest rate accumulator for an asset

function interestAccumulator(address underlying) external view returns (uint);

Parameters:

underlying: Token address

Returns:

An opaque accumulator that increases as interest is accrued

reserveFee

Retrieves the reserve fee in effect for an asset

function reserveFee(address underlying) external view returns (uint32);

Parameters:

underlying: Token address

Returns:

Amount of interest that is redirected to the reserves, as a fraction scaled by RESERVE_FEE_SCALE
(4e9)

getPricingConfig

Retrieves the pricing config for an asset

function getPricingConfig(address underlying) external view returns (uint16 pricingType, uint3

Parameters:

underlying: Token address

Returns:

pricingType: (1=pegged, 2=uniswap3, 3=forwarded, 4=chainlink)

pricingParameters: If uniswap3 pricingType then this represents the uniswap pool fee used, if chainlink
pricing type this represents the fallback uniswap pool fee or 0 if none

pricingForwarded: If forwarded pricingType then this is the address prices are forwarded to, otherwise
address(0)

getChainlinkPriceFeedConfig

Retrieves the Chainlink price feed config for an asset

function getChainlinkPriceFeedConfig(address underlying) external view returns (address chainl

Parameters:

underlying: Token address

Returns:

chainlinkAggregator: Chainlink aggregator proxy address

getEnteredMarkets

Retrieves the list of entered markets for an account (assets enabled for collateral or borrowing)

function getEnteredMarkets(address account) external view returns (address[] memory);

Parameters:

account: User account

Returns:

List of underlying token addresses

enterMarket

Add an asset to the entered market list, or do nothing if already entered

function enterMarket(uint subAccountId, address newMarket) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

newMarket: Underlying token address

exitMarket

Remove an asset from the entered market list, or do nothing if not already present

function exitMarket(uint subAccountId, address oldMarket) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

oldMarket: Underlying token address

IEulerExec

Batch executions, liquidity check deferrals, and interfaces to fetch prices and account liquidity

LiquidityStatus

Liquidity status for an account, either in aggregate or for a particular asset

struct LiquidityStatus {

 uint collateralValue;

 uint liabilityValue;

 uint numBorrows;

 bool borrowIsolated;

}

AssetLiquidity

Aggregate struct for reporting detailed (per-asset) liquidity for an account

struct AssetLiquidity {

 address underlying;

 LiquidityStatus status;

}

EulerBatchItem

Single item in a batch request

struct EulerBatchItem {

 bool allowError;

 address proxyAddr;

 bytes data;

}

EulerBatchItemResponse

Single item in a batch response

struct EulerBatchItemResponse {

 bool success;

 bytes result;

}

BatchDispatchSimulation

Error containing results of a simulated batch dispatch

error BatchDispatchSimulation(EulerBatchItemResponse[] simulation);

liquidity

Compute aggregate liquidity for an account

function liquidity(address account) external view returns (LiquidityStatus memory status);

Parameters:

account: User address

Returns:

status: Aggregate liquidity (sum of all entered assets)

detailedLiquidity

Compute detailed liquidity for an account, broken down by asset

function detailedLiquidity(address account) external view returns (AssetLiquidity[] memory ass

Parameters:

account: User address

Returns:

assets: List of user's entered assets and each asset's corresponding liquidity

getPrice

Retrieve Euler's view of an asset's price

function getPrice(address underlying) external view returns (uint twap, uint twapPeriod);

Parameters:

underlying: Token address

Returns:

twap: Time-weighted average price

twapPeriod: TWAP duration, either the twapWindow value in AssetConfig, or less if that duration not
available

getPriceFull

Retrieve Euler's view of an asset's price, as well as the current marginal price on uniswap

function getPriceFull(address underlying) external view returns (uint twap, uint twapPeriod, u

Parameters:

underlying: Token address

Returns:

twap: Time-weighted average price

twapPeriod: TWAP duration, either the twapWindow value in AssetConfig, or less if that duration not
available

currPrice: The current marginal price on uniswap3 (informational: not used anywhere in the Euler
protocol)

deferLiquidityCheck

Defer liquidity checking for an account, to perform rebalancing, flash loans, etc. msg.sender must implement
IDeferredLiquidityCheck

function deferLiquidityCheck(address account, bytes memory data) external;

Parameters:

account: The account to defer liquidity for. Usually address(this), although not always

data: Passed through to the onDeferredLiquidityCheck() callback, so contracts don't need to store
transient data in storage

batchDispatch

Execute several operations in a single transaction

function batchDispatch(EulerBatchItem[] calldata items, address[] calldata deferLiquidityCheck

Parameters:

items: List of operations to execute

deferLiquidityChecks: List of user accounts to defer liquidity checks for

batchDispatchSimulate

Call batch dispatch, but instruct it to revert with the responses, before the liquidity checks.

function batchDispatchSimulate(EulerBatchItem[] calldata items, address[] calldata deferLiquid

Parameters:

items: List of operations to execute

deferLiquidityChecks: List of user accounts to defer liquidity checks for

trackAverageLiquidity

Enable average liquidity tracking for your account. Operations will cost more gas, but you may get additional
benefits when performing liquidations

function trackAverageLiquidity(uint subAccountId, address delegate, bool onlyDelegate) externa

Parameters:

subAccountId: subAccountId 0 for primary, 1-255 for a sub-account.

delegate: An address of another account that you would allow to use the benefits of your account's
average liquidity (use the null address if you don't care about this). The other address must also
reciprocally delegate to your account.

onlyDelegate: Set this flag to skip tracking average liquidity and only set the delegate.

unTrackAverageLiquidity

Disable average liquidity tracking for your account and remove delegate

function unTrackAverageLiquidity(uint subAccountId) external;

Parameters:

subAccountId: subAccountId 0 for primary, 1-255 for a sub-account

getAverageLiquidity

Retrieve the average liquidity for an account

function getAverageLiquidity(address account) external returns (uint);

Parameters:

account: User account (xor in subAccountId, if applicable)

Returns:

The average liquidity, in terms of the reference asset, and post risk-adjustment

getAverageLiquidityWithDelegate

Retrieve the average liquidity for an account or a delegate account, if set

function getAverageLiquidityWithDelegate(address account) external returns (uint);

Parameters:

account: User account (xor in subAccountId, if applicable)

Returns:

The average liquidity, in terms of the reference asset, and post risk-adjustment

getAverageLiquidityDelegateAccount

Retrieve the account which delegates average liquidity for an account, if set

function getAverageLiquidityDelegateAccount(address account) external view returns (address);

Parameters:

account: User account (xor in subAccountId, if applicable)

Returns:

The average liquidity delegate account

pTokenWrap

Transfer underlying tokens from sender's wallet into the pToken wrapper. Allowance should be set for the
euler address.

function pTokenWrap(address underlying, uint amount) external;

Parameters:

underlying: Token address

amount: The amount to wrap in underlying units

pTokenUnWrap

Transfer underlying tokens from the pToken wrapper to the sender's wallet.

function pTokenUnWrap(address underlying, uint amount) external;

Parameters:

underlying: Token address

amount: The amount to unwrap in underlying units

usePermit

Apply EIP2612 signed permit on a target token from sender to euler contract

function usePermit(address token, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32

Parameters:

token: Token address

value: Allowance value

deadline: Permit expiry timestamp

v: secp256k1 signature v

r: secp256k1 signature r

s: secp256k1 signature s

usePermitAllowed

Apply DAI like (allowed) signed permit on a target token from sender to euler contract

function usePermitAllowed(address token, uint256 nonce, uint256 expiry, bool allowed, uint8 v,

Parameters:

token: Token address

nonce: Sender nonce

expiry: Permit expiry timestamp

allowed: If true, set unlimited allowance, otherwise set zero allowance

v: secp256k1 signature v

r: secp256k1 signature r

s: secp256k1 signature s

usePermitPacked

Apply allowance to tokens expecting the signature packed in a single bytes param

function usePermitPacked(address token, uint256 value, uint256 deadline, bytes calldata signat

Parameters:

token: Token address

value: Allowance value

deadline: Permit expiry timestamp

signature: secp256k1 signature encoded as rsv

doStaticCall

Execute a staticcall to an arbitrary address with an arbitrary payload.

function doStaticCall(address contractAddress, bytes memory payload) external view returns (by

Parameters:

contractAddress: Address of the contract to call

payload: Encoded call payload

Returns:

result: Encoded return data

IEulerEToken

Tokenised representation of assets

name

Pool name, ie "Euler Pool: DAI"

function name() external view returns (string memory);

symbol

Pool symbol, ie "eDAI"

function symbol() external view returns (string memory);

decimals

Decimals, always normalised to 18.

function decimals() external pure returns (uint8);

underlyingAsset

Address of underlying asset

function underlyingAsset() external view returns (address);

totalSupply

Sum of all balances, in internal book-keeping units (non-increasing)

function totalSupply() external view returns (uint);

totalSupplyUnderlying

Sum of all balances, in underlying units (increases as interest is earned)

function totalSupplyUnderlying() external view returns (uint);

balanceOf

Balance of a particular account, in internal book-keeping units (non-increasing)

function balanceOf(address account) external view returns (uint);

balanceOfUnderlying

Balance of a particular account, in underlying units (increases as interest is earned)

function balanceOfUnderlying(address account) external view returns (uint);

reserveBalance

Balance of the reserves, in internal book-keeping units (non-increasing)

function reserveBalance() external view returns (uint);

reserveBalanceUnderlying

Balance of the reserves, in underlying units (increases as interest is earned)

function reserveBalanceUnderlying() external view returns (uint);

convertBalanceToUnderlying

Convert an eToken balance to an underlying amount, taking into account current exchange rate

function convertBalanceToUnderlying(uint balance) external view returns (uint);

Parameters:

balance: eToken balance, in internal book-keeping units (18 decimals)

Returns:

Amount in underlying units, (same decimals as underlying token)

convertUnderlyingToBalance

Convert an underlying amount to an eToken balance, taking into account current exchange rate

function convertUnderlyingToBalance(uint underlyingAmount) external view returns (uint);

Parameters:

underlyingAmount: Amount in underlying units (same decimals as underlying token)

Returns:

eToken: balance, in internal book-keeping units (18 decimals)

touch

Updates interest accumulator and totalBorrows, credits reserves, re-targets interest rate, and logs asset
status

function touch() external;

deposit

Transfer underlying tokens from sender to the Euler pool, and increase account's eTokens

function deposit(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In underlying units (use max uint256 for full underlying token balance)

withdraw

Transfer underlying tokens from Euler pool to sender, and decrease account's eTokens

function withdraw(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In underlying units (use max uint256 for full pool balance)

mint

Mint eTokens and a corresponding amount of dTokens ("self-borrow")

function mint(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In underlying units

burn

Pay off dToken liability with eTokens ("self-repay")

function burn(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In underlying units (use max uint256 to repay the debt in full or up to the available underlying
balance)

approve

Allow spender to access an amount of your eTokens in sub-account 0

function approve(address spender, uint amount) external returns (bool);

Parameters:

spender: Trusted address

amount: Use max uint256 for "infinite" allowance

approveSubAccount

Allow spender to access an amount of your eTokens in a particular sub-account

function approveSubAccount(uint subAccountId, address spender, uint amount) external returns

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

spender: Trusted address

amount: Use max uint256 for "infinite" allowance

allowance

Retrieve the current allowance

function allowance(address holder, address spender) external view returns (uint);

Parameters:

holder: Xor with the desired sub-account ID (if applicable)

spender: Trusted address

transfer

Transfer eTokens to another address (from sub-account 0)

function transfer(address to, uint amount) external returns (bool);

Parameters:

to: Xor with the desired sub-account ID (if applicable)

amount: In internal book-keeping units (as returned from balanceOf).

transferFromMax

Transfer the full eToken balance of an address to another

function transferFromMax(address from, address to) external returns (bool);

Parameters:

from: This address must've approved the to address, or be a sub-account of msg.sender

to: Xor with the desired sub-account ID (if applicable)

transferFrom

Transfer eTokens from one address to another

function transferFrom(address from, address to, uint amount) external returns (bool);

Parameters:

from: This address must've approved the to address, or be a sub-account of msg.sender

to: Xor with the desired sub-account ID (if applicable)

amount: In internal book-keeping units (as returned from balanceOf).

donateToReserves

Donate eTokens to the reserves

function donateToReserves(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In internal book-keeping units (as returned from balanceOf).

IEulerDToken

Tokenised representation of debts

name

Debt token name, ie "Euler Debt: DAI"

function name() external view returns (string memory);

symbol

Debt token symbol, ie "dDAI"

function symbol() external view returns (string memory);

decimals

Decimals of underlying

function decimals() external view returns (uint8);

underlyingAsset

Address of underlying asset

function underlyingAsset() external view returns (address);

totalSupply

Sum of all outstanding debts, in underlying units (increases as interest is accrued)

function totalSupply() external view returns (uint);

totalSupplyExact

Sum of all outstanding debts, in underlying units normalized to 27 decimals (increases as interest is
accrued)

function totalSupplyExact() external view returns (uint);

balanceOf

Debt owed by a particular account, in underlying units

function balanceOf(address account) external view returns (uint);

balanceOfExact

Debt owed by a particular account, in underlying units normalized to 27 decimals

function balanceOfExact(address account) external view returns (uint);

borrow

Transfer underlying tokens from the Euler pool to the sender, and increase sender's dTokens

function borrow(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In underlying units (use max uint256 for all available tokens)

repay

Transfer underlying tokens from the sender to the Euler pool, and decrease sender's dTokens

function repay(uint subAccountId, uint amount) external;

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

amount: In underlying units (use max uint256 for full debt owed)

flashLoan

Request a flash-loan. A onFlashLoan() callback in msg.sender will be invoked, which must repay the loan to
the main Euler address prior to returning.

function flashLoan(uint amount, bytes calldata data) external;

Parameters:

amount: In underlying units

data: Passed through to the onFlashLoan() callback, so contracts don't need to store transient data in
storage

approveDebt

Allow spender to send an amount of dTokens to a particular sub-account

function approveDebt(uint subAccountId, address spender, uint amount) external returns (bool)

Parameters:

subAccountId: 0 for primary, 1-255 for a sub-account

spender: Trusted address

amount: In underlying units (use max uint256 for "infinite" allowance)

debtAllowance

Retrieve the current debt allowance

function debtAllowance(address holder, address spender) external view returns (uint);

Parameters:

holder: Xor with the desired sub-account ID (if applicable)

spender: Trusted address

transfer

Transfer dTokens to another address (from sub-account 0)

function transfer(address to, uint amount) external returns (bool);

Parameters:

to: Xor with the desired sub-account ID (if applicable)

amount: In underlying units. Use max uint256 for full balance.

transferFrom

Transfer dTokens from one address to another

function transferFrom(address from, address to, uint amount) external returns (bool);

Parameters:

from: Xor with the desired sub-account ID (if applicable)

to: This address must've approved the from address, or be a sub-account of msg.sender

amount: In underlying units. Use max uint256 for full balance.

IEulerLiquidation

Liquidate users who are in collateral violation to protect lenders

LiquidationOpportunity

Information about a prospective liquidation opportunity

struct LiquidationOpportunity {

 uint repay;

 uint yield;

 uint healthScore;

 // Only populated if repay > 0:

 uint baseDiscount;

 uint discount;

 uint conversionRate;

}

checkLiquidation

Checks to see if a liquidation would be profitable, without actually doing anything

function checkLiquidation(address liquidator, address violator, address underlying, address co

Parameters:

liquidator: Address that will initiate the liquidation

violator: Address that may be in collateral violation

underlying: Token that is to be repayed

collateral: Token that is to be seized

Returns:

liqOpp: The details about the liquidation opportunity

liquidate

Attempts to perform a liquidation

function liquidate(address violator, address underlying, address collateral, uint repay, uint

Parameters:

violator: Address that may be in collateral violation

underlying: Token that is to be repayed

collateral: Token that is to be seized

repay: The amount of underlying DTokens to be transferred from violator to sender, in units of underlying

minYield: The minimum acceptable amount of collateral ETokens to be transferred from violator to
sender, in units of collateral

IEulerSwap

Trading assets on Uniswap V3 and 1Inch V4 DEXs

SwapUniExactInputSingleParams

Params for Uniswap V3 exact input trade on a single pool

struct SwapUniExactInputSingleParams {

 uint subAccountIdIn;

 uint subAccountIdOut;

 address underlyingIn;

 address underlyingOut;

 uint amountIn;

 uint amountOutMinimum;

 uint deadline;

 uint24 fee;

 uint160 sqrtPriceLimitX96;

}

Parameters:

subAccountIdIn: subaccount id to trade from

subAccountIdOut: subaccount id to trade to

underlyingIn: sold token address

underlyingOut: bought token address

amountIn: amount of token to sell

amountOutMinimum: minimum amount of bought token

deadline: trade must complete before this timestamp

fee: uniswap pool fee to use

sqrtPriceLimitX96: maximum acceptable price

SwapUniExactInputParams

Params for Uniswap V3 exact input trade routed through multiple pools

struct SwapUniExactInputParams {

 uint subAccountIdIn;

 uint subAccountIdOut;

 uint amountIn;

 uint amountOutMinimum;

 uint deadline;

 bytes path; // list of pools to hop - constructed with uni SDK

}

Parameters:

subAccountIdIn: subaccount id to trade from

subAccountIdOut: subaccount id to trade to

underlyingIn: sold token address

underlyingOut: bought token address

amountIn: amount of token to sell

amountOutMinimum: minimum amount of bought token

deadline: trade must complete before this timestamp

path: list of pools to use for the trade

SwapUniExactOutputSingleParams

Params for Uniswap V3 exact output trade on a single pool

struct SwapUniExactOutputSingleParams {

 uint subAccountIdIn;

 uint subAccountIdOut;

 address underlyingIn;

 address underlyingOut;

 uint amountOut;

 uint amountInMaximum;

 uint deadline;

 uint24 fee;

 uint160 sqrtPriceLimitX96;

}

Parameters:

subAccountIdIn: subaccount id to trade from

subAccountIdOut: subaccount id to trade to

underlyingIn: sold token address

underlyingOut: bought token address

amountOut: amount of token to buy

amountInMaximum: maximum amount of sold token

deadline: trade must complete before this timestamp

fee: uniswap pool fee to use

sqrtPriceLimitX96: maximum acceptable price

SwapUniExactOutputParams

Params for Uniswap V3 exact output trade routed through multiple pools

struct SwapUniExactOutputParams {

 uint subAccountIdIn;

 uint subAccountIdOut;

 uint amountOut;

 uint amountInMaximum;

 uint deadline;

 bytes path;

}

Parameters:

subAccountIdIn: subaccount id to trade from

subAccountIdOut: subaccount id to trade to

underlyingIn: sold token address

underlyingOut: bought token address

amountOut: amount of token to buy

amountInMaximum: maximum amount of sold token

deadline: trade must complete before this timestamp

path: list of pools to use for the trade

Swap1InchParams

Params for 1Inch trade

struct Swap1InchParams {

 uint subAccountIdIn;

 uint subAccountIdOut;

 address underlyingIn;

 address underlyingOut;

 uint amount;

 uint amountOutMinimum;

 bytes payload;

}

Parameters:

subAccountIdIn: subaccount id to trade from

subAccountIdOut: subaccount id to trade to

underlyingIn: sold token address

underlyingOut: bought token address

amount: amount of token to sell

amountOutMinimum: minimum amount of bought token

payload: call data passed to 1Inch contract

swapUniExactInputSingle

Execute Uniswap V3 exact input trade on a single pool

function swapUniExactInputSingle(SwapUniExactInputSingleParams memory params) external;

Parameters:

params: struct defining trade parameters

swapUniExactInput

Execute Uniswap V3 exact input trade routed through multiple pools

function swapUniExactInput(SwapUniExactInputParams memory params) external;

Parameters:

params: struct defining trade parameters

swapUniExactOutputSingle

Execute Uniswap V3 exact output trade on a single pool

function swapUniExactOutputSingle(SwapUniExactOutputSingleParams memory params) external;

Parameters:

params: struct defining trade parameters

swapUniExactOutput

Execute Uniswap V3 exact output trade routed through multiple pools

function swapUniExactOutput(SwapUniExactOutputParams memory params) external;

Parameters:

params: struct defining trade parameters

swapAndRepayUniSingle

Trade on Uniswap V3 single pool and repay debt with bought asset

function swapAndRepayUniSingle(SwapUniExactOutputSingleParams memory params, uint targetDebt)

Parameters:

params: struct defining trade parameters (amountOut is ignored)

targetDebt: amount of debt that is expected to remain after trade and repay (0 to repay full debt)

swapAndRepayUni

Trade on Uniswap V3 through multiple pools pool and repay debt with bought asset

function swapAndRepayUni(SwapUniExactOutputParams memory params, uint targetDebt) external;

Parameters:

params: struct defining trade parameters (amountOut is ignored)

targetDebt: amount of debt that is expected to remain after trade and repay (0 to repay full debt)

swap1Inch

Execute 1Inch V4 trade

function swap1Inch(Swap1InchParams memory params) external;

Parameters:

params: struct defining trade parameters

IEulerSwapHub

Common logic for executing and processing trades through external swap handler contracts

SwapParams

Params defining a swap request

struct SwapParams {

 address underlyingIn;

 address underlyingOut;

 uint mode;

 uint amountIn;

 uint amountOut;

 uint exactOutTolerance;

 bytes payload;

}

swap

Execute a trade using the requested swap handler

function swap(uint subAccountIdIn, uint subAccountIdOut, address swapHandler, SwapParams memor

Parameters:

subAccountIdIn: sub-account holding the sold token. 0 for primary, 1-255 for a sub-account

subAccountIdOut: sub-account to receive the bought token. 0 for primary, 1-255 for a sub-account

swapHandler: address of a swap handler to use

params: struct defining the requested trade

swapAndRepay

Repay debt by selling another deposited token

function swapAndRepay(uint subAccountIdIn, uint subAccountIdOut, address swapHandler, SwapPara

Parameters:

subAccountIdIn: sub-account holding the sold token. 0 for primary, 1-255 for a sub-account

subAccountIdOut: sub-account to receive the bought token. 0 for primary, 1-255 for a sub-account

swapHandler: address of a swap handler to use

params: struct defining the requested trade

targetDebt: how much debt should remain after calling the function

IEulerPToken

Protected Tokens are simple wrappers for tokens, allowing you to use tokens as collateral without permitting
borrowing

name

PToken name, ie "Euler Protected DAI"

function name() external view returns (string memory);

symbol

PToken symbol, ie "pDAI"

function symbol() external view returns (string memory);

decimals

Number of decimals, which is same as the underlying's

function decimals() external view returns (uint8);

underlying

Address of the underlying asset

function underlying() external view returns (address);

balanceOf

Balance of an account's wrapped tokens

function balanceOf(address who) external view returns (uint);

totalSupply

Sum of all wrapped token balances

function totalSupply() external view returns (uint);

allowance

Retrieve the current allowance

function allowance(address holder, address spender) external view returns (uint);

Parameters:

holder: Address giving permission to access tokens

spender: Trusted address

transfer

Transfer your own pTokens to another address

function transfer(address recipient, uint amount) external returns (bool);

Parameters:

recipient: Recipient address

amount: Amount of wrapped token to transfer

transferFrom

Transfer pTokens from one address to another. The euler address is automatically granted approval.

function transferFrom(address from, address recipient, uint amount) external returns (bool);

Parameters:

from: This address must've approved the to address

recipient: Recipient address

amount: Amount to transfer

approve

Allow spender to access an amount of your pTokens. It is not necessary to approve the euler address.

function approve(address spender, uint amount) external returns (bool);

Parameters:

spender: Trusted address

amount: Use max uint256 for "infinite" allowance

wrap

Convert underlying tokens to pTokens

function wrap(uint amount) external;

Parameters:

amount: In underlying units (which are equivalent to pToken units)

unwrap

Convert pTokens to underlying tokens

function unwrap(uint amount) external;

Parameters:

amount: In pToken units (which are equivalent to underlying units)

claimSurplus

Claim any surplus tokens held by the PToken contract. This should only be used by contracts.

function claimSurplus(address who) external;

Parameters:

who: Beneficiary to be credited for the surplus token amount

IEulerEulDistributor

claim

Claim distributed tokens

function claim(address account, address token, uint claimable, bytes32[] calldata proof, addre

Parameters:

account: Address that should receive tokens

token: Address of token being claimed (ie EUL)

proof: Merkle proof that validates this claim

stake: If non-zero, then the address of a token to auto-stake to, instead of claiming

IEulerEulStakes

staked

Retrieve current amount staked

function staked(address account, address underlying) external view returns (uint);

Parameters:

account: User address

underlying: Token staked upon

Returns:

Amount of EUL token staked

StakeOp

Staking operation item. Positive amount means to increase stake on this underlying, negative to decrease.

struct StakeOp {

 address underlying;

 int amount;

}

stake

Modify stake of a series of underlyings. If the sum of all amounts is positive, then this amount of EUL will be
transferred in from the sender's wallet. If negative, EUL will be transferred out to the sender's wallet.

function stake(StakeOp[] memory ops) external;

Parameters:

ops: Array of operations to perform

stakeGift

Increase stake on an underlying, and transfer this stake to a beneficiary

function stakeGift(address beneficiary, address underlying, uint amount) external;

Parameters:

beneficiary: Who is given credit for this staked EUL

underlying: The underlying token to be staked upon

amount: How much EUL to stake

stakePermit

Applies a permit() signature to EUL and then applies a sequence of staking operations

function stakePermit(StakeOp[] memory ops, uint value, uint deadline, uint8 v, bytes32 r, byte

Parameters:

ops: Array of operations to perform

value: The value field of the permit message

deadline: The deadline field of the permit message

v: Signature field

r: Signature field

s: Signature field

Architecture
Contract architecture

Module System

Except for a small amount of dispatching logic (see Euler.sol), the contracts are organised into

modules, which live in contracts/modules/ .

There are several reasons why modules are used:

A proxy indirection layer which is used for dispatching calls from sub-contracts like ETokens and
DTokens (see below)

Each token must have its own address to conform to ERC-20, even though all storage lives inside
the Euler contract

Contract upgrades

Modules can be upgraded, which can immediately upgrade all ETokens (for example)

Avoid hitting the max contract size limitation of ~24kb

See the file contracts/Constants.sol for the registry of module IDs. There are 3 categories of

modules:

Single-proxy modules: These are modules that are only accessible by a single address. For example,
market activation is done by invoking a function on the single proxy for the Markets module.

Multi-proxy modules: These are modules that have many addresses. For example, each EToken gets
an address, but any calls to them are dispatched to the single EToken module instance.

Internal modules: These are modules that are called internally by the Euler system and don't have any
public proxies. These are only useful for their upgrade functionality, and the ability to stub in non-
production code during testing/development. Examples are the RiskManager and interest rate model
(IRM) modules.

Since modules are invoked by delegatecall, they should not have any storage-related initialisation in their
constructors. The only thing that should be done in their constructors is to initialise immutable variables,
since these are embedded into the contract's bytecode, not storage. Modules also should not define any
storage variables. In the rare cases they need private storage (ie interest rate model state), they should use
unstructured storage.

Proxies

Modules cannot be called directly. Instead, they must be invoked through a proxy. All proxies are
implemented by the same code: contracts/Proxy.sol . This is a very simple contract that forwards its

requests to the main Euler contract address, along with the original msg.sender. The call is done with a
normal call() , so the execution takes place within the Euler contract's storage context, not the proxy's.

Proxies contain the bare minimum amount of logic required for forwarding. This is because they are not
upgradeable. They should ideally be small so as to minimise gas costs since many of them will be deployed
(at least 2 per market activated).

The Euler contract ensures that all requests to it are from a known trusted proxy address. The only way that
addresses can become known trusted is when the Euler contract itself creates them. In this way, the original
msg.sender sent by the proxy can be trusted.

The only other thing that proxies do is to accept messages from the Euler contract that instruct them to issue
log messages. For example, if an EToken proxy's transfer method is invoked, a Transfer event must

be logged from the EToken proxy's address, not the main Euler address.

One important feature provided by the proxy/module system is that a single storage context (ie the main
Euler contract) can have multiple possibly-colliding function ABI namespaces, which is not possible with
systems like a conventional upgradeable proxy, or the Diamond standard. For example, Euler provides
multiple ERC-20 interfaces but there is no worry that the balanceOf() methods of the ETokens and

DTokens (which necessarily have the same selector) will collide.

For more details on the proxy protocol see docs/proxy-protocol.md .

Dispatching

Other than the proxies, contracts/Euler.sol is the only other code that cannot be upgraded. It is the

implementation of the main Euler contract. Essentially its only job is to be a placeholder address for the
Euler storage, and to delegatecall() to the appropriate modules.

When it invokes a module, contracts/Euler.sol:dispatch() appends some extra data onto the

end of the msg.data it receives from the proxy:

Its own view of msg.sender , which corresponds to the address of the proxy.

The msgSender passed in from the (trusted) proxy, which corresponds to the original msg.sender

that invoked the proxy.

The reason it appends onto the end of the data is so that this extra information does not interfere with the
ABI decoding that is done by the module: Solidity's ABI decoder is tolerant of extra trailing data and will
ignore it. This allows us to use the module interfaces output from solc directly when communicating with

the proxies, while still allowing the functions to extract the proxy addresses and original msg.sender s as

seen by the proxies.

Since the modules are invoked by delegatecall() , the proxy address is typically available to module

code as msg.sender , so why is it necessary to pass this in to the modules? It's because batch requests

allow users to invoke methods without going through the proxies (see below).

Modules

Installer

The first module used is the installer module. This module is used to bootstrap install the rest of the
modules, and can later on be used to upgrade modules to add new features and/or fix bugs.

Currently the functions are gated so that the upgradeAdmin address is the only address that can upgrade

modules. However, the installer module itself is also upgradeable, so this logic can be restricted as we move
towards greater levels of decentralisation.

EToken

Every market has an EToken. This is the primary interface for the tokenisation of assets in the Euler
protocol:

deposit: Transfer tokens from your wallet into Euler, and receive interest earning tokens in return.

withdraw: Redeem your ETokens for the underlying tokens, which are transfered from Euler to your
wallet, along with any interest accrued.

Additionally, ETokens provide an ERC-20 compliant interface which allows you to transfer and approve
transfers of your ETokens, as is typical.

Like Compound, but unlike AAVE, these tokens have static balances. That is, accrued interest will not cause
the value returned from balanceOf to increase. Rather, that fixed balance entitles you to reclaim more

and more of the underlying asset as time progresses. Although the AAVE model is conceptually nicer,
experience has shown that increasing balance tokens causes a lot of pain to integrators. In particular, if you
transfer X ETokens into a pool contract and later withdraw that same X, you have not earned any interest
and the pool has some left over dust ETokens that typically aren't allocated to anyone.

A downside of the Compound model is that the values returned from balanceOf are in internal

bookkeeping units and don't really have any meaning to external users. There is of course a
balanceOfUnderlying method (named the same as Compound's method, which may become a

defacto standard) that returns the amount in terms of the underlying and does increase block to block.

DToken

Every market also has a DToken. This is the primary interface for the tokenisation of debts in the Euler
protocol:

borrow: If you have sufficient collateral, Euler sends you the underlying tokens and issues you a
corresponding amount of debt tokens.

repay: Transfer tokens from your wallet in order to burn the DTokens, which reduces your debt
obligation.

DTokens also implement a partially ERC-20 compliant interface. Unlike AAVE, where these are non-
transferrable, DTokens can be transferred. The permissioning logic is the opposite of ETokens: While you
can send your ETokens to anyone without their permission, with DTokens you can "take" anybody else's
DTokens without their permission (assuming you have sufficient collateral). Similarly, just as you can
approve another address to take some amount of your ETokens, you can use approveDebt() to grant

another account permission to send you some amount of DTokens.

The approveDebt() name was used instead of the ERC-20 approve() due to concerns that some

contracts might unintentionally allow themselves to receive "negative value" tokens.

As well as providing a flexible platform for debt trading and assignment, this system also permits easy
transferring of debt positions between sub-accounts (see below).

Unlike ETokens, DToken balances do increase block-to-block as interest is accrued. This means that in
order to pay off a loan in full, you should specify MAX_UINT256 as the amount to pay off, so that all interest
accrued at the point the repay transaction is mined gets repaid. Note that most Euler methods accept this
MAX_UINT256 value to indicate that the contract should determine the maximum amount you can
deposit/withdraw/borrow/repay at the time the transaction is mined.

In the code you will also see INTERNAL_DEBT_PRECISION . This is because DTokens are tracked at a

greater precision versus ETokens (27 decimals versus 18) so that interest compounding is more accurate.
However, to present a common external decimals amount, this internal precision is hidden from external
users of the contract. Note that these decimal place amounts remain the same even if the underlying token
uses fewer decimal places than 18 (see the Decimals Normalisation section below).

Markets

This module allows you to activate new markets on the Euler protocol. Any token can be activated, as long
as there exists a Uniswap 3 pair between it and the reference asset (WETH version 9 in the standard
deployment, although any 18-decimal token could be used).

It also allows you to enter/exit markets, which controls which of your ETokens are used as collateral for your
debts. This terminology was chosen deliberately to match Compound's, since many of our users will be
familiar with Compound already.

Unlike Compound which keeps both an array and a mapping for each user, we only keep an array. Upon
analysis we realised that almost every access to the mapping will be done inside a transaction that also
scans through the array (usually as a liquidity check) so the mapping was (nearly) redundant and we thus
could eliminate an SSTORE when entering a market. Furthermore, instead of a normal length-prefixed
storage array, we store the length in a packed slot that is loaded for other reasons. This saves an additional
SSTORE since we don't need to update the array length, and saves and SLOAD on every liquidity check
(more important post Berlin fork). Taking it one step further, there is also an optimisation where the first
entered market address is stored in a special variable that is packed together with this length.

Finally, the markets module allows external users to query for market configuration parameters (ie collateral
factors) and current states (ie interest rates).

RiskManager

This is an internal module, meaning it is only called by other modules, and does not have a proxy entry
point.

RiskManager is called when a market is activated, to get the default risk parameters for a newly created
market. Also, it is called after every operation that could affect a user's liquidity (withdrawal, borrow,
transferring E/DTokens, exiting a market, etc) to ensure that no liquidity violations have occurred. This logic
could be implemented in BaseLogic, and would be slightly more efficient if so, but then upgrading the risk
parameters would require upgrading nearly every other module.

In order to check liquidity, this module must retrieve prices of assets (see the Pricing section below).

Governance

This module lets a particular privileged address update market configuration parameters, such as the TWAP
intervals, borrow and collateral factors, and interest rate models.

Eventually this logic will be enhanced to support EUL-token driven governance.

Liquidation

This module implements the liquidations system (see below).

Exec

This module implements some of the more advanced ways of invoking the Euler contract (described futher
below):

Batch requests

Deferred liquidity checks

It also has an entry point for querying detailed information about an account's liquidity status.

Swap

This module allows users to swap their deposited underlying tokens on Uniswap V3 and 1inch DEXes.
Under the hood, the tokens are swapped directly from the pool, thus saving gas, which would normally be
spent to withdraw and deposit back the traded assets. From the user's perspective the swap will change the
balances of their eTokens.

Paired with deferred liquidity check (see below), the swap module allows users to put on one-click
leveraged long and short positions on any collateral vs collateral asset pairs and one-click leveraged short
positions on any collateral vs non-collateral pairs.

Available swap methods:

all four methods of UniswapV3 SwapRouter

full 1inch aggregator functionality, integrated through 1Inch API

Note: The Swap module may become deprecated in favor of the new SwapHub module.

SwapHub

https://docs.uniswap.org/protocol/reference/periphery/SwapRouter
https://docs.1inch.io/docs/aggregation-protocol/api/swap-params/

This module is a redesigned version of the Swap module. The improvements include:

modular architecture, easily extendible to support additional DEXs

support for rebasing and fee-on-transfer tokens, like stETH

SwapHub doesn't execute trades on its own. It relies on external swap handlers, which can be created by

anyone and are not a part of the platform. The swap handlers are required to share a common interface,
namely an executeSwap function which takes a SwapParams struct with the requested trade options. It

is up to the user to select a swap handler to use by passing its address to the module's function calls. The
swap handlers receive a transfer of the sold token before being invoked, and are expected to return both the
bought tokens as well as any unused input. The module's only responsibility is to process the trade and
verify its results (tokens sold and received) fall within user specified bounds in terms of amounts requested
and slippage settings. To support exact output swaps for rebasing and fee-on-transfer tokens, it is possible
to set a maximum difference of tokens requested vs received: exactOutTolerance .

Swap handlers

Currently there are 3 swap handlers available in the Euler repository, executing trades on:

Uniswap V3 through SwapRouter

1Inch

Uniswap V2 and V3 using Uniswap's smart order router

See for more details.Swap Handlers

Storage and Inheritance

Most of the modules inherit from BaseLogic which provides common lending logic related functionality.

This contract inherits from BaseModule , which inherits from Base , which inherits from Storage .

Almost all the functions in the Base modules are declared as private or internal. This is necessary so that
modules don't export unexpected functions, and also so that the solidity compiler can optimise away
unneeded functions (not all modules use all functions).

contracts/Storage.sol contains the storage layout that is used by all modules. It is important that

this match, since all modules are called with delegatecall() from the Euler contract context.

Furthermore, it is important that upgrades preserve the storage ordering and offsets. The test
test/storage.js has the beginning of an implementation to take the Soldity compiler's storage layout

output and verify that it is consistent across upgrades. After we deploy our first version, we will "freeze" the
storage layout and encode this in the test/storage.js test.

Pricing

Euler uses Uniswap 3 as its default pricing oracle. In order to ensure that prices are not vulnerable to
snapshot manipulation, this requires using the time-weighted average price (TWAP) of a recent time period.

https://github.com/Uniswap/v3-periphery/blob/main/contracts/SwapRouter.sol
https://github.com/Uniswap/smart-order-router
https://github.com/euler-xyz/euler-docs/blob/master/developers/getting-started/swap-handlers.md

When a market is activated, the RiskManager calls increaseObservationCardinalityNext() on

the uniswap pool to increase the size of the uniswap oracle's ring buffer to a minimum size. By default this
size is 144, because this is on-average sufficient to satisfy a TWAP window of 30 minutes, assuming 12.5
second block times.

The Euler contracts will try to retrieve prices averaged over the per-instrument twapWindow parameter. If it

cannot be serviced because the oldest value in the ring buffer is too recent, it will use the oldest price
available (which we have ensured is at least 144 blocks old).

Our blog series describes our pricing system in more detail: https://medium.com/euler-xyz/prices-and-
oracles-2da0126a138

Chainlink prices

To support the assets that do not have a WETH pair on Uniswap 3 or the pair has insufficient liquidity to
provide secure TWAP oracle, Euler extended its pricing types to include Chainlink price feeds as the pricing
source.

Chainlink is the most used data provider in the industry. It has a very good reputation and provides secure
pricing feeds that are used by lending protocol industry leaders like Aave, Compound and others. Integration
with Chainlink on Euler brings a reduction of the protocol's dependency on Uniswap. It lowers the oracle
manipulation risks for those assets that have very little liquidity in WETH pair on Uniswap 3. Also, for all the
assets that have the Chainlink oracle set as a price source, it reduces the gas usage for all the operations
that require price fetching.

Learn more about Chainlink Price Feeds: https://docs.chain.link/docs/using-chainlink-reference-contracts/

Pegged prices

An exception to the Uniswap 3 and Chainlink pricing above is for assets that are equivalent to the reference
asset. These assets can have a pricing type of "pegged" which indicates their price is always 1:1 with the
reference asset. Currently the only asset that is pegged is the reference asset itself, which is WETH.

Price forwarding

Another exception is for assets that are equivalent to another asset, in which case the pricing can be
"forwarded". This is currently only used for .pTokens

Liquidity Deferrals

Normally, upon the completion of an operation that could fail due to a collateral violation (ie taking out a
loan, withdrawing ETokens, exiting a market), the user's liquidity must be checked. This is done immediately
after each operation by calling contracts/BaseLogic.sol:checkLiquidity() , which calls the

internal RiskManager module's requireLiquidity() which will revert the transaction if the account is

insufficiently collateralised.

https://medium.com/euler-xyz/prices-and-oracles-2da0126a138
https://docs.chain.link/docs/using-chainlink-reference-contracts/

However, this pattern causes some sequences of operations to fail unnecessarily. For example, a user must
deposit ETokens and enter the market first, before taking out a loan, even if this is done in the same atomic
transaction.

Furthermore, this can result in needless gas consumption. Consider a user taking out two loans in the same
transaction: If the liquidity is checked each time, that means two separate liquidity checks are done, each of
which requires accessing prices, looping over the entered markets list, and computing the liquidity (net of
assets and liabilities, converted to the reference asset, and scaled by corresponding collateral and borrow
factors).

Liquidity deferral is a general purpose solution to this. Users (which must be smart contracts, but see Batch
Requests below) can call the deferLiquidityCheck() function in the Exec module. This function

disables all liquidity checking for a specified account, and then re-enters the caller by calling the
onDeferredLiquidityCheck() function on msg.sender . While this callback is executing,

checkLiquidity() will not bother checking the liquidity for the specified account. After the function

returns, the liquidity will then be checked.

As well as gas optimisation, and normal use-cases like refinancing loans, this also allows users to take out
.flash loans

For flash loans in particular, the protocol provides an adaptor contract FlashLoan , which complies with

the standard. The adaptor internally uses liquidity deferral to borrow tokens and additionally
requires that the loan is paid back in full within the transaction.

ERC-3156

eToken <> dToken Symmetry

The primary operations on eTokens and dTokens are deposit/withdraw and borrow/repay, respectively.
However, there is another interface that in some ways is more fundamental: mint/burn. These operations
work on both eTokens and dTokens simultaneously. A mint operation creates both eTokens and dTokens in
equivalent amounts, and assigns both to the user. A burn operation destroys eTokens and dTokens in
equivalent amounts. These operations can be thought of as borrowing from yourself and repaying yourself.
Alternatively, eTokens and dTokens can be thought of as a sort of matter and anti-matter, appearing from
"nowhere" when minted (no underlying tokens required) and cancelling one another out of existence when
burned.

All of the primary operations can be re-conceptualised as variants of mint and burn. For example, if there
were no borrow function, it could be implemented in terms of a mint and a withdraw: the mint would create
both eTokens and dTokens, and then the withdraw would destroy the eTokens leaving just dTokens.

deposit: mint, repay

withdraw: borrow, burn

borrow: mint, withdraw

repay: deposit, burn

https://medium.com/euler-xyz/prices-and-oracles-2da0126a138
https://eips.ethereum.org/EIPS/eip-3156

There are some practical advantages with the mint and burn operations. One of which is that it becomes
possible to repay a loan with eTokens instead of the underlying by burning a corresponding amount of
eTokens together with the dTokens from the loan. This may be useful when the underlying token is illiquid --
perhaps because it has been paused -- but there is still a market for eTokens (incidentally, the stability pools
described in the liquidation section are examples of eToken to eToken markets).

With the Swap module, Euler users can swap one eToken for another by performing an external swap on
Uniswap. This saves users gas by avoiding deposit/withdraw overhead. When combined with mint, allows
the construction of leveraged positions without any underlying token ever transiting user wallets.

Another area where the eToken/dToken symmetry is exposed is liquidations. Instead of the liquidator
sending borrowed tokens and receiving collateral, Euler's liquidation flow simply transfers borrowed
dTokens and collateral eTokens from the violator to the liquidator. The liquidator will typically withdraw the
collateral, exchange it, and then repay to destroy the dTokens, but this is not strictly necessary. The
liquidator could choose to retain the debt if, for example, there is insufficient available collateral tokens in the
pool, or the swapping conditions are temporarily sub-optimal.

Sub Accounts

In order to prevent a problem inherent with borrowing multiple assets using the same backing collateral, it is
sometimes necessary to "isolate" borrows. This is especially important for volatile and/or untrusted tokens
that shouldn't have the capability to affect more stable tokens.

Euler implements this borrow isolation to protect lenders. However, this can lead to a suboptimal user
experience. In the event a user wants to borrow multiple assets (and one or more are isolated), a separate
wallet must be created and funded. Although there is nothing wrong with having many metamask accounts,
this can be a bad experience, especially when they are using hardware wallets.

In order to improve on this, Euler supports the concept of sub-accounts. Every ethereum address has 256
sub-accounts on Euler (including the primary account). Each sub-account has a sub-account ID from 0-255,
where 0 is the primary account's ID. In order to compute the sub-account addresses, the sub-account ID is
treated as a uint and XORed (exclusive ORed) with the ethereum address.

Yes, this reduces the security of addresses by 8 bits, but creating multiple addresses in metamask also
reduces security: if somebody is trying to brute-force one of your N>1 private keys, they have N times as
many chances of succeeding per guess. Although it has to be admitted that the subaccount model is weaker
because finding a private key for a subaccount gives access to all subaccounts, but there is still a very
comfortable security margin.

You only need to approve Euler once per token, and then you can then deposit/repay into any of your sub-
accounts. No approvals are necessary to transfer assets or liabilities between sub-accounts. Operations can
also be done to mutiple sub-accounts within a single transaction by using batch requests (see below).

The Euler UI will make it convenient to view at a glance the composition of your sub-accounts, and to
rebalance collateral as needed to maintain your debt positions.

Batch Requests

Sometimes it is useful to be able to do multiple operations within a single transaction. This can be useful to
reduce gas overhead by amortising the fixed transaction costs, especially if the operations involve multiple
writes to the same storage slots (post Istanbul fork) and/or multiple reads from the same storage slots (post
Berlin fork). It can also be useful to add atomicity to a sequence of operations (either they all succeed or they
all fail).

In Ethereum these benefits are available to smart contracts, but not EOAs (normal private/public keypair
accounts). This is unfortunate because many users can't/won't deploy smart contract wallets.

As a partial solution to this, the contracts/modules/Exec.sol:batchDispatch() function allows

a group of Euler interactions to be executed within a single blockchain transaction. This is a "partial"
solution since users cannot execute arbitrary logic in between the interactions, but is nonetheless sufficient
for a wide variety of use-cases.

For example, in order to provide collateral to Euler, two separate steps must occur: Depositing into the
EToken, and entering the market for that EToken. Rather than requiring users to make two separate
transactions, or implementing a hypothetical depositAndEnter() function (which would imply a

combinatorial explosion of method combinations), batch transactions can be employed.

Additionally, liquidity checks can be deferred on one or more accounts in a batch transaction. This can
provide significant gas cost savings and can allow flash-loan-like rebalancing without the need for a smart
contract. We are planning on implementing a built-in swap functionality that will convert one EToken to
another by performing a swap on Uniswap. This would be very gas-efficient since tokens do not need to be
moved from external wallets to and from Euler's wallet, and would also allow an easy way to create
leveraged positions, even for EOA users.

Reserves

Similar to Compound and AAVE, a proportion of the interest earned in a pool is collected by the protocol as
a fee. Euler again uses the same terminology as Compound, calling the aggregate amount of collected fees
the "reserve". These fees are controlled by governance, and may be paid out to EUL token holders, used to
compensate lenders should pools become insolvent, or applied to other uses that benefit the protocol.

Reserves provide a buffer of funds that can cover losses due to positions that are too small to liquidate, and
can also be a source of funds for governance to implement insurance, distribute to EUL stakers, or apply to
some other purpose that benefits the protocol.

Unlike Compound where the reserves are denominated in the underlying, Euler's reserves are stored in the
internal bookkeeping units that represent EToken balances. This means that they accrue interest over time,
as with any other EToken deposit. Of course, Compound governance could periodically choose to withdraw
their reserves and re-deposit them in the pool to earn this interest, but in Euler it happens automatically and
continuously. Similar to Euler, AAVE deposits earned reserve interest into a special treasury account that
owns the aTokens, however this is much less efficient than the special-cased reserves model of
Compound/Euler, involving several cross-contract calls. In Euler, the reserves overhead is primarily two
SSTORE operations, to slots that would be written to anyway.

When we issue "eTokens" to the reserve, it inflates the eToken supply (making them less valuable).
However, we only do this after we increase totalBorrows, ensuring that the inflation is less than what was
earned as interest, proportional to the reserve fee configured for that asset.

Derivation of Reserves Formulas

Compound

In Compound, the assets owned by CToken holders are the total "cash" (unallocated underlying units in the
pool) plus the total outstanding borrows (which increase as interest is accrued), minus the total reserves
(which are owned by Compound governance):

assetsCompound = totalCash + totalBorrows - totalReserves

Prior to most operations, the accruedInterest since the last operation is computed. In Compound, this

is added to totalBorrows , and accruedInterest * reserveFactor is added to

totalReserves , resulting in new value for the assets:

newAssetsCompound = assets + accruedInterest - (accruedInterest * reserveFactor)

Compound's totalReserves is in units of the underlying, so it does not accrue interest, however

governance could vote to withdraw these reserves and re-deposit them in exchange for CTokens, which
would.

If totalSupply is the sum of the balances of all CToken holders, the exchange rate between these

CToken balances and the underlying token is:

newExchangeRateCompound = newAssetsCompound / totalSupply

Euler

After applying interest, the new exchange rate is the same for both Compound and Euler, although how it is
computed differs. Rather than deducting the reserve fees from the newAssets , Euler increases

totalSupply . So the new value for assets is computed as though no reserve fees were being deducted:

newAssetsEuler = assets + accruedInterest

In Euler, reserves are tracked in EToken units which means they earn interest automatically. When interest is
accrued it is added to totalBorrows in the same way as Compound. But then, instead of adding the

collected fee to totalReserves (causing it to be deducted from newAssetsCompound), a special

number of new ETokens are minted and credited to the reserves, which increases totalSupply . This

number of newly minted ETokens is selected so as to inflate the supply just enough to divert a
reserveFactor proportion of the interest away from EToken holders to the reserves.

In order to show that this results in the same exchange rate as Compound's method, we can derive the
algorithm that Euler uses to compute newTotalSupply using Compound's value:

newExchangeRate = newAssetsEuler / newTotalSupply

newTotalSupply = newAssetsEuler / newExchangeRate

Substituting in Compound's value for newExchangeRate :

newTotalSupply = newAssetsEuler / (newAssetsCompound / totalSupply)

newTotalSupply = newAssetsEuler / ((assets + accruedInterest - (accruedInterest * reserveFacto

Simplifying:

newTotalSupply = totalSupply * newAssetsEuler / (newAssetsEuler - (accruedInterest * reserveFa

Finally, the reserve balance (denominated in ETokens) is increased by newTotalSupply -

totalSupply .

This is the algorithm used in the code, except for operation re-ordering done to avoid rounding truncation.

PTokens

"Protected" tokens exist to provide users the option to deposit tokens and use them as collateral, while not
permitting them to be loaned out. PTokens provide users with additional safety, at the expense of not earning
any interest on the deposited asset. PToken depositors don't need to worry about a pool becoming insolvent,
or that their assets will be loaned out when they wish to retrieve them.

Rather than applying this as universal setting on an asset, it is up to the user to decide whether they want to
protect their collateral. Since Euler only supports one eToken per underlying asset, a token wrapper contract
is used. Users first wrap their underlying tokens into pTokens, and then deposit these pTokens into Euler,
receiving "epTokens" which can then be used for collateral.

Another use-case of pTokens is to prevent tokens from being borrowed to perform governance-related
attacks. Because the borrowing-prevention check happens inside increaseBorrow() (and not in

checkLiquidity()), pTokens cannot even be flash borrowed.

Interest rate models

FIXME: describe

Liquidations

Borrowers must maintain sufficient collateral in order to support their borrows. In particular, each account
must maintain a "health score" above 1. The health score is computed by dividing the account's

 collateral value by its risk-adjusted liability value. Since the collateral factor decreases the effective
value of the collateral, and the borrow factor increases the effective value of the liability, when the health
score is 1, then the account is still technically solvent (assets are worth more than liability), but the account
is said to be in "violation".

risk-
adjusted

When an account is in violation, the liquidate() method of the Liquidation module can be invoked by

anyone (except by the violating account itself, to avoid aliasing bugs). The account invoking this method is
called the "liquidator". This method does two things:

1. Transfers some DTokens from the violator to the liquidator. This represents debt that is being taken over
by the liquidator.

2. Transfers some ETokens from the violator to the liquidator. This represents the collateral being seized
by the liquidator in exchange for taking the debt.

Because of the collateral and borrow factors, reducing the assets and liabilities in equal values (relative to
the reference asset ETH) will result in a user's health score increasing (except in certain pathological
circumstances). The amount of DTokens/ETokens is selected to be just enough to return a user to a higher
health score, by default 1.25. This is what is referred to as a , in contrast with the simpler
method of liquidating a fixed proportion of the loan.

soft liquidation

Since the liquidator is taking on debt, the liquidating account's liquidity must be checked after a liquidation.
Typically a liquidator will be a smart contract so it can atomically perform other operations in addition to the
liquidation, and in particular can to later in the same transaction, allowing "flash
liquidations".

defer the liquidity check

Liquidation bots that wish to operate without capital requirements may follow the following pattern for
liquidations:

Defer liquidity check

Liquidate an account, receiving underlying DTokens and collateral ETokens

Withdraw enough of the collateral to repay the debt

Convert this collateral on a decentralised exchange such as Uniswap

Repay the debt, zeroing-out the DToken balance

At this point, there is no outstanding debt so the deferred liquidity check will succeed. Any left over ETokens
are profit, and can be held by the liquidation smart contract or transferred to another account.

Dynamic discounts

If the seized debt and collateral were each worth the same in terms of a reference asset (for example ETH),
then there would be no point in performing liquidations. In order to incentivise liquidators, the amount of
collateral seized is increased by a certain factor. Since the violator is effectively receiving a lower price for
purchasing collateral, this factor is known as a "discount".

https://docs.euler.finance/getting-started/white-paper#risk-adjusted-borrowing-capacity
https://docs.euler.finance/getting-started/white-paper#soft-liquidations

Euler uses a dynamic value for this discount rather than a fixed value. The discount increases by how far the
violator's health score has decreased below 1 . For example, if an account's health score has fallen to

0.98 , then the discount received is 1 - 0.98 = 0.02 , or 2%.

Euler uses Uniswap3 TWAPs for the price feeds of all assets which has the property in which the prices on
the protocol change smoothly over time. This is central to how the dynamic discount is designed to work,
and creates a Dutch auction-like mechanism that finds the lowest possible market-clearing discount level.

Dynamic discount example

Let's suppose a borrower has a health score of 1.1 and then a large swap is performed on a borrowed

asset which increases its current price on Uniswap significantly. Immediately after this swap (ie, throughout
the rest of the block the swap was included in) then the TWAP of the asset is unchanged (since no time has
passed). This means that the account's health score is also unchanged.

However, as time goes on and the weight of the new price increases, then the TWAP will increase which
means that the health score will decrease (the liability is becoming more valuable). Note that this in fact
happens at second-granularity. If the swap was large enough, then at some point in the future the averaged
price will be such that the health score is exactly equal to 1 . Assuming that the TWAP hasn't yet caught up

with the current price, then in any subsequent block the health score will be below 1 and there will

therefore be a liquidation opportunity.

Now, at this point, the discount will be extremely small. If the health score is 0.999 then the discount

would be a mere 0.1%. This level of discount is most likely not enough to make a liquidation worth-while.
First of all, because the prices used to calculate the equivalent values of assets are TWAPs, they don't yet
take into account the current (non-averaged) price of the underlying asset. Secondly, the discount must
compensate the liquidator for any execution slippage, gas costs, and other operational overhead.

All of this is to say that it is unlikely that anybody will perform the liquidation at this point. But as time goes on
and the TWAP increases, the health score decreases and the discount improves. At some instant in time a
bot will determine that the current discount will result in a profitable liquidation. At this point it has two
options: it can either execute the liquidation and take the small profit, or wait until the discount increases
further. If the bot waits then it risks losing the liquidation opportunity to another liquidator.

Reserves

When a liquidation happens, a small amount of additional borrowed asset beyond the soft-liquidation
amount must be repaid by the liquidator (which is compensated by a corresponding extra discount amount).
This additional amount is credited to the borrowed asset's reserves.

This is done to pad the reserves for assets that are frequently liquidated, since this may be indicative of
volatile asset which may have a higher risk of accruing bad debt.

Another option could have been to pad the reserves of the collateral asset, however on Euler not all assets
can be used as collateral so many pools would have no opportunity for their reserves to be increased in this
manner.

Front-running protection

The Dutch auction-like mechanism described above can provide a discount to anyone who calls
liquidate() . This means that liquidations are permission-less which is desirable for various reasons,

not least of which because liquidations cannot be censored.

However, permissionless liquidations are often affected by so-called "front-running". This is when a bot sees
a profitable new transaction and submits it for themselves with a higher gas price. While front-running isn't
directly a problem for the protocol, it can be detrimental for the ecosystem:

The capture of value by miners means that it is less profitable to operate liquidation bots, so there may
be fewer people doing so, and those who do may be less aggressive.

A lot of resources are wasted on failed transactions and bidding up the gas prices of liquidations.

In Euler we would like to reward the operators of liquidation bots instead of miners, and reduce their level of
reward to the minimal level that a competitive market will bear. In order to do this, an extra "bonus" is applied
to the discount for users who have assets deposited into the Euler protocol. This bonus works by increasing
the slope of the discount. For instance, if a user has enough assets deposited to provide a 2x bonus, then
instead of getting a 1% discount, they would get a 2% discount.

If you are operating a liquidation bot, you can become profitable before front-running bots by keeping a
balance of non-zero collateral factor assets. In order to receive a full bonus, your risk-adjusted collateral
should be at least equal to the risk-adjusted value of the liquidation you are processing (anything less will
result in a smaller bonus).

With bonuses and the Dutch action mechanism, our hope is that gas auctions will be rare, and the majority
of the value of liquidations will accrue to users who benefit the protocol by supplying assets.

Note that the liquidity used to claim a bonus must be held in the Euler contracts for a period of time. The full
averaged liquidity will be achieved after a day (see . This means that no bonus
will be applied if someone atomically supply liquidity, liquidates, and then withdraws.

Average Liquidity Tracking

Functional Diagram

The functional diagram depicts the smart contract architecture and how proxies, the Euler contract and
modules relate to each other.

Let's follow an execution of the deposit function on an eToken.

1. The user calls deposit on an eToken proxy of the underlying she wants to deposit to Euler.

2. The proxy attaches msg.sender to the call data and calls dispatch on Euler contract in the

fallback function.

3. Through a lookup of the proxy address Euler finds the currently installed module implementation for

an eToken and delegate-calls it, attaching the proxy address to the call data.

4. The deposit function in EToken module contract unpacks the trailing params from call data to

determine the original sender's address. The proxy address determines the underlying of the eToken,
which the deposit function pulls from the user's wallet. An underlying of an eToken can be a

pToken , which wraps a collateral asset.

5. Internal modules IRM and RiskManager are delegate-called to compute the new interest rate and

check the account health.

6. Finally emitViaProxy function is called to emit standard Transfer event from the proxy address

in compliance with ERC20. The proxy only allows this if the msg.sender is the Euler contract.

Misc Details

Average Liquidity Tracking

In order to provide a liquidation discount that privileges investors in the system, Euler can optionally track
the liquidity of an account. In order to opt-in to this, an account should call the
trackAverageLiquidity() function in the exec module. This will cause most operations such as

depositing and withdrawing to consume more gas, but will make the account eligible for extra discount
privileges, if it participates in liquidations.

The actual value that is tracked is the risk adjusted liquidity, that is, after applying collateral factors and
borrow factors. So, only assets with non-zero collateral factors will contribute to the liquidity. Similarly,
outstanding borrows will reduce the average liquidity.

In order to prevent a user (or front-running bot) from simply depositing a large amount prior to a liquidation
(perhaps using a flash loan), the average value of the liquidity over a period of time is tracked. For example,
immediately after depositing for the first time, your average liquidity will be 0. Only after
AVERAGE_LIQUIDITY_PERIOD seconds have elapsed will your full liquidity value be reflected.

The averaging is implemented with an exponential moving average, that is updated with the current liquidity
value before any operation (such as deposit) is performed. This is not perfect, since the average liquidity will
not reflect price movements between updates. Also, a user could opportunistically cause an update when
prices are exceptionally high or low, although the prices are of course TWAPs so are more difficult to
manipulate.

We don't believe these limitations will be significant with respect to the use case described above. That
said, if enabled, the average liquidity for an account is available with
exec.getUpdatedAverageLiquidity() , so long as your application can accept the limitations

described above.

Decimals

The ERC-20 specification allows contracts to choose the number of decimal places that a token supports.
This is now widely regarded as problematic, since it causes a lot of annoying integration work (see ERC-
777 for an interesting alternative).

Rather than exposing this to our system, we have decided to normalise the decimals up to 18 for all tokens
(Euler for now does not support tokens with > 18 decimals). As well as simplifying our contract and off-chain
logic, this allows more precise interest accrual.

Rounding

Debts are always rounded up to the smallest possible external unit (1 "wei" on 18 decimal tokens). This
means that after any interest at all is accrued (ie, after 1 second), borrowers already owe at least 1 unit.
When you repay, this extra fraction is added to the EToken pool. This works because debt amounts are
tracked at a higher precision (27 decimals) than the external units (0-18 decimals).

Compounding behaviour

Unlike Compound, where the compounding occurs whenever a user interacts with a token, Euler
compounds deterministically every second. The amounts owed/earned are independent of how often the
contract is interacted with, except of course for interactions that result in interest rate changes. As
mentioned, the compounding precision is done to 27 decimal places, according to the current interest rate in
effect (determined by the interest rate model).

In the Compound system, interest accumulators are opportunistically updated for all operations that affect
assets, which is necessary because this is how compounding is achieved (simple interest being charged
between updates). Because Euler precisely tracks the per-second compounded balance, there is no
advantage to updating the accumulator frequently, and therefore Euler does it lazily only when it actually
needs to (before operations that affect debt obligation balances). So as well as being more accurate, this
means that fewer storage writes are needed.

External access to interest accumulators

There is a method in the markets module, interestAccumulator() that retrieves the current interest

accumulator for an asset. Because the accumulators are updated lazily as described above, rather than just
returning the stored value, this method computes the updated accumulator given the most recent block's
timestamp (sometimes called a "counterfactual" value).

Although the returned values are in opaque internal units, they can be used to determine the accumulated
interest over time by comparing snapshots. This is sort of like using Uniswap-style "TWAPs": By dividing a
recent snapshot by an older snapshot, the actual amount of interest collected between those two time
periods is computed.

Unusual/Malicious tokens

We try to work as well as possible with "deflationary" tokens. These are tokens where when you request a
transfer for X, fewer than X tokens are actually transferred. For these, we check the Euler contract's balance
in the token before and after to determine how much was transferred.

Relatedly, on some tokens the balanceOf method can return different results with no intervening

operations. In this case, the total pool available to owners of ETokens of these underlyings will be affected,
but the protocol itself will not be (assuming such tokens have collateral factors of 0, which is the default).

Since we allow arbitrary tokens to be activated, our threat model is larger than that of Compound/AAVE. We
need to worry about misbehaving tokens, even one-off tokens written specifically to attempt theft from the
protocol. See the file docs/attacks.md for some more notes on the threat modelling.

Tokens may return extremely large values in an attempt to cause math overflows. This could be disastrous,
especially if a user could cause their own liquidity checks to fail. In this case, a user could create an un-
liquidateable position. To prevent this, when we receive a very large result from balanceOf , we treat that

result as though it were 0 (which a malicious token could also do of course). This way liquidity checks will at
least succeed, allowing non-malicious collaterals to be liquidated.

Proxy Protocol

Proxies are non-upgradeable stub contracts that have two jobs:

Forward method calls from external users to the main Euler contract

Receive method calls from the main Euler contract and log events as instructed

Although proxies themselves are non-upgradeable, they integrate with Euler's module system, which does
allow for upgrades.

The following protocols all use custom assembly routines instead of the solidity ABI encoder/decoder. While
we don't take this lightly, the measured overhead of keeping this in pure solidity was too high. In order to
make up for this otherwise regrettable use of assembly, this document explains the protocols in detail.

Proxy -> Euler

To the calldata received in a fallback, the proxy prepends the 4-byte selector for dispatch()

(0xe9c4a3ac), and appends its view of msg.sender :

[dispatch() selector (4 bytes)][calldata (N bytes)][msg.sender (20 bytes)]

This data is then passed to the Euler contract with a CALL (not DELEGATECALL).

Euler -> module

In the dispatch() method, the Euler contract looks up its view of msg.sender , which corresponds to

the proxy address.

The presumed proxy address is then looked up in the trustedSenders mapping, which must exist

otherwise the call is reverted. It is determined to exist by having a non-zero entry in the moduleId field

(modules must have non-zero IDs).

The only way a proxy address can be added to trustedSenders is if the Euler contract itself creates it

(using the _createProxy function in contracts/Base.sol).

In the case of a single-proxy module, the same storage slot in trustedSenders will also contain an

address for the module's implementation. If not (ie multi-proxy modules), then the module implementation
must be looked up with an additional lookup in the moduleLookup mapping. This is because during an

upgrade, single-proxy modules just have to update this one spot, whereas multi-proxy modules would
otherwise need to update every corresponding entry in trustedSenders .

At this point we know the message is originating from a legitimate proxy, so the last 20 bytes can be
assumed to correspond to an actual msg.sender who invoked a proxy. The length of the calldata is

checked. It should be at least 4 + 4 + 20 bytes long, which corresponds to:

4 bytes for the dispatch() selector.

4 bytes for selector used to call the proxy (non-standard ABI invocations and fallback methods are not
supported in modules).

20 bytes for the trailing msg.sender .

The Euler contract then takes the received calldata and strips off the dispatch() selector, and then

appends its view of msg.sender (caller() in assembly), which corresponds to the proxy's address.

This results in the following:

[original calldata (N bytes)][original msg.sender (20 bytes)][proxy addr (20 bytes)]

This data is then sent to the module implementation with DELEGATECALL , so the module implementation

code is executing within the storage context of the main Euler contract.

The module implementation will unpack the original calldata using the solidity ABI decoder, ignoring the
trailing 40 bytes.

Modules are not allowed to access msg.sender . Instead, they should use the

unpackTrailingParamMsgSender() helper in contracts/BaseModule.sol which will retrieve

the message sender from the trailing calldata.

When modules need to access the proxy address, there is a composite helper
unpackTrailingParams() that returns both trailing params. msg.sender is still not allowed to be

used for this, since modules can be invoked via a batch dispatch, instead of via the proxy.

module -> Proxy

When a module directly emits a log (or "event" at the solidity level) it will happen from the main Euler
contract's address. This is fine for many logs, but not in certain cases like when a module is implementing
the ERC-20 standard. In these cases it is necessary to emit the log from the address of the proxy itself.

In order to do this, the Euler contract (specifically one of the modules) does a CALL to the proxy address.

When the proxy sees a call to its fallback from the Euler contract (its creator), it knows not to re-enter the
Euler contract. Instead, it interprets this call as an instruction to issue a log message. This is the format of the
calldata:

[number of topics as uint8 (1 byte)][topic #i (32 bytes)]{0,4}[extra log data (N bytes)]

The proxy unpacks this message and executes the appropriate log instruction, log0 , log1 , etc,

depending on the number of topics.

Numeric Limits

amounts

uint112

Maximum sane amount (result of balanceOf) for external tokens

Uniswap2 limits token amounts to this

Spec: For an 18 decimal token, more than a million billion tokens (1e15)

small amounts

uint96

For holding amounts that we don't expect to get quite as large, in particular reserve balances

Can pack together with an address in a single slot

Spec: For an 18 decimal token, more than a billion tokens (1e9)

debt amounts

uint144

Maximum sane amount for debts

Packs together with an amount in a single storage slot

Spec: Should hold the maximum possible amount (uint112) but scaled by another 9 decimal places (for
the internal debt precision)

Actual: 2e16

prices

Minimum supported price:

Fraction: 1e3 / 1e18 = 1e-15

Tick: -345405

sqrtPriceX96: 2505418623681149822473

Maximum supported price:

Fraction: 1e33 / 1e18 = 1e15

Tick: 345405

sqrtPriceX96: 2505410343826649584586222772852783278

The supported price range was chosen for the following reason:

The maximum price squared fits in a uint256: 6e73 < 1e77

Not necessary to use FullMath library

The maximum supported price times the maximum supported amount fits within a uint256: 5e66 <

1e77

Also holds with debt and its extra 9 digits of precision: 5e75 < 1e77

interestRate

int96

"Second Percent Yield"

Fraction scaled by 1e27

Example: 10% APR = 1e27 * 0.1 / (86400*365) = 1e27 *

0.000000003170979198376458650 = 3170979198376458650

Spec: 1 billion % APR, positive or negative

interestAccumulator

uint256

Starts at 1e27, multiplied by (1e27 + interestRate) every second

Spec: 100% APR for 100 years

-> 2^256

~= 1.1579208923e+77

-> 10^27 * (1 + (100/100 / (86400*365)))^(86400*365*100)

~= 2.6881128798e+70

moduleId

uint32

One per module, so this is way more than needed

Divided into 3 sections

<500_000: Public single-proxy

=500_000 and <1_000_000: Public multi-proxy

=1_000_000: Internal

Spec: A dozen or so modules, with room to grow in all sections

collateralFactor/borrowFactor

uint32

Fraction between 0 and 1, scaled by 2^32 - 1

Spec: At least 3 decimal places (overkill)

SDK

 is a JavaScript SDK for the Euler platform. It is used in production in the Euler Dapp and a few
other applications, although it's currently considered an alpha software.
Euler-sdk

See the for docs and examples.Github repo

Please feel free to open a pull request, create an issue in the repo, or reach out to us with feature requests
and suggestions in the #mainnet-development channel.Discord

https://www.npmjs.com/package/@eulerxyz/euler-sdk
https://github.com/euler-xyz/euler-sdk
https://discord.gg/CdG97VSYGk

Subgraph
Subgraph

Links

Querying the subgraph: https://thegraph.com/docs/en/developer/query-the-graph/

Mainnet

The Graph: https://thegraph.com/hosted-service/subgraph/euler-xyz/euler-mainnet

API: https://api.thegraph.com/subgraphs/name/euler-xyz/euler-mainnet

About

All amounts have a fixed decimal precision of 1e18.

Are timestamps are represented as .unix timestamps

USD and ETH exchange rates of all assets are pulled through Euler directly

All ratios have a fixed decimal precision of 1e27.

Entities

Asset

Contains information about all Euler markets, pulled from EulerGeneralView contract.

https://en.wikipedia.org/wiki/Unix_time

type Asset @entity {

 "asset_address"

 id: ID!

 "Block hash at which asset was created"

 blockHash: Bytes!

 "Block number at which asset was created"

 blockNumber: Int!

 "Timestamp at which asset was created"

 timestamp: Int!

 "Block hash at which asset was last updated"

 updatedBlockHash: Bytes!

 "Block number at which asset was last updated"

 updatedBlockNumber: Int!

 "Timestamp at which asset was last updated"

 updatedTimestamp: Int!

 "Tx hash at which asset was created"

 transactionHash: Bytes!

 "Tx origin at which asset was created"

 transactionOrigin: Bytes!

 dTokenAddress: Bytes!

 eTokenAddress: Bytes!

 pTokenAddress: Bytes!

 symbol: String!

 name: String!

 decimals: BigInt!

 totalSupply: BigInt!

 totalBalances: BigInt!

 totalBalancesUsd: BigInt!

 totalBalancesEth: BigInt!

 totalBorrows: BigInt!

 totalBorrowsUsd: BigInt!

 totalBorrowsEth: BigInt!

 reserveBalance: BigInt!

 reserveBalanceEth: BigInt!

 reserveBalanceUsd: BigInt!

 reserveFee: BigInt!

 borrowAPY: BigInt!

 supplyAPY: BigInt!

 twap: BigInt!

 twapUsd: BigDecimal!

 "Deprecated in favor of twapUsd. Do not use."

 twapPrice: BigDecimal!

 twapPeriod: BigInt!

 currPrice: BigInt!

 currPriceUsd: BigInt!

 pricingType: Int!

 pricingParameters: BigInt!

 pricingForwarded: Bytes!

 collateralValue: BigInt!

 liabilityValue: BigInt!

 numBorrows: BigInt!

 borrowIsolated: Boolean!
 poolSize: BigInt!

 interestRate: BigInt!

 interestAccumulator: BigInt!

 config: AssetConfig

}

Sometimes, gouvernance will manually set asset configuration, it is displayed in the AssetConfig entity. If an
asset has a null AssetConfig, it is safe to assume that it was never explicitly set and is isolated.

For further tier information, refer to .Tier Methodology

borrowFactor and collateralFactor can be transformed in a decimal fraction by dividing by

4e9 .

type AssetConfig @entity {

 "asset_address"

 id: ID!

 twapWindowInSeconds: Int!

 borrowFactor: BigInt!

 borrowIsolated: Boolean!

 collateralFactor: BigInt!

 tier: String!

}

Account

Account that transacts on Euler. Could be a sub-account or a main account.

type Account @entity {

 "account_address"

 id: ID!

 createdTimestamp: Int!

 topLevelAccount: TopLevelAccount!

 balances: [Balance!]

 balanceChanges: [BalanceChange!]

 balanceChangesCount: Int!

}

A Balance represents the current amount of each assets held by an account.

type Balance @entity {

 "account_address:underlying"

 id: ID!

 account: Account!

 amount: BigInt!

 asset: Asset!

}

https://github.com/euler-xyz/euler-docs/blob/master/risk-framework/tiers.md

A BalanceChange is a transaction within the platform. type can be one of the following values:

borrow

deposit

withdraw

repay

type BalanceChange @entity {

 "transaction_hash:event_log_index"

 id: ID!

 transactionHash: Bytes!

 type: String!

 account: Account!

 topLevelAccount: TopLevelAccount!

 amount: BigInt!

 amountUsd: BigDecimal!

 timestamp: Int!

 asset: Asset!

TopLevelAccount

Aggregate of the sub-accounts associated with a wallet. TopLevelAccount id corresponds to main sub-
account id.

type TopLevelAccount @entity {

 "account_address"

 id: ID!

 createdTimestamp: Int!

 accounts: [Account!]

 balances: [TopLevelAccountBalance!]

 balanceChanges: [BalanceChange!]

 balanceChangesCount: Int!

}

type TopLevelAccountBalance @entity {

 "top_level_account_address:underlying"

 id: ID!

 topLevelAccount: TopLevelAccount!

 amount: BigInt!

 asset: Asset!

}

EulerMarketStore

Contains list of all active markets on Euler.

type EulerMarketStore @entity {

 id: ID!

 markets: [Asset!]

}

EulerOverview

Aggregated metrics for all markets as a whole.

type EulerOverview @entity {

 id: ID!

 reserveBalanceUsd: BigInt!

 reserveBalanceEth: BigInt!

 totalBalancesUsd: BigInt!

 totalBalancesEth: BigInt!

 totalBorrowsUsd: BigInt!

 totalBorrowsEth: BigInt!

}

Liquidation

Contains all liquidation transactions.

liquidator and violator fields correspond to account addresses.

type Liquidation @entity {

 "transaction_hash:event_log_index"

 id: ID!

 timestamp: Int!

 transactionHash: Bytes!

 liquidator: Bytes!

 violator: Bytes!

 asset: Asset!

 collateralAsset: Asset!

 repay: BigInt!

 repayUsd: BigDecimal!

 harvest: BigInt!

 yieldUsd: BigDecimal!

 healthScore: BigInt!

 discount: BigInt!

 baseDiscount: BigInt!

}

Governance

GovConvertReserve and GovSetReserveFee contain all on-chain information about governance.

type GovConvertReserve @entity {

 "transaction_hash:event_log_index"

 id: ID!

 timestamp: Int!

 blockNumber: Int!

 transactionHash: Bytes!

 amount: BigInt!

 amountUsd: BigDecimal!

 asset: Asset!

 recipient: Bytes!

}

type GovSetReserveFee @entity {

 "transaction_hash:event_log_index"

 id: ID!

 timestamp: Int!

 blockNumber: Int!

 transactionHash: Bytes!

 reserveFee: Int!

 asset: Asset!

}

Hourly/Daily/MonthlyAssetSnapshot

Snapshot of Asset entity at the end of every hour, day and month.

Useful for querying historical data on markets.

type HourlyAssetSnapshot @entity {

 "start_of_hour_timestamp:asset_address"

 id: ID!

 asset: Asset!

 "Block number at which snapshot was created"

 blockHash: Bytes!

 "Block hash at which snapshot was created"

 blockNumber: Int!

 "Timestamp at which snapshot was created"

 timestamp: Int!

 "Tx hash at which asset was created"

 transactionHash: Bytes!

 "Tx origin at which asset was created"

 transactionOrigin: Bytes!

 totalSupply: BigInt!

 totalBalances: BigInt!

 totalBalancesUsd: BigInt!

 totalBalancesEth: BigInt!

 totalBorrows: BigInt!

 totalBorrowsUsd: BigInt!

 totalBorrowsEth: BigInt!

 reserveBalance: BigInt!

 reserveBalanceEth: BigInt!

 reserveBalanceUsd: BigInt!

 reserveFee: BigInt!

 borrowAPY: BigInt!

 supplyAPY: BigInt!

 twap: BigInt!

 twapUsd: BigDecimal!

 twapPeriod: BigInt!

 currPrice: BigInt!

 currPriceUsd: BigInt!

 pricingType: Int!

 pricingParameters: BigInt!

 pricingForwarded: Bytes!

 collateralValue: BigInt!

 liabilityValue: BigInt!

 numBorrows: BigInt!

 borrowIsolated: Boolean!

 poolSize: BigInt!

 interestAccumulator: BigInt!

 interestRate: BigInt!

}

Hourly/Daily/MonthlyAssetStatus

This entity has been deprecated in favor of Hourly/Daily/MonthlyAssetSnapshot

Aggregated metrics of a specific market over hourly, daily and monthly time period.

type HourlyAssetStatus @entity {

 "start_of_hour_timestamp:asset_address"

 id: ID!

 timestamp: Int!

 totalBalances: BigInt!

 totalBorrows: BigInt!

 reserveBalance: BigInt!

 poolSize: BigInt!

 interestAccumulator: BigInt!

 interestRate: BigInt!

 twapPrice: BigDecimal!

 twapUsd: BigDecimal!

 asset: Asset!

}

Hourly/Daily/MonthlyRepay

Aggregated metrics for repay transactions over hourly, daily and monthly time period.

type HourlyRepay @entity {

 "start_of_hour_timestamp"

 id: ID!

 timestamp: Int!

 count: Int!

 totalAmount: BigInt!

 totalUsdAmount: BigDecimal!

}

Hourly/Daily/MonthlyDeposit

Aggregated metrics for deposits over hourly, daily and monthly time period.

type HourlyDeposit @entity {

 "start_of_hour_timestamp"

 id: ID!

 timestamp: Int!

 count: Int!

 totalAmount: BigInt!

 totalUsdAmount: BigDecimal!

}

Hourly/Daily/MonthlyWithdraw

Aggregated metrics for withdrawals over hourly, daily and monthly time period.

type HourlyWithdraw @entity {

 "start_of_hour_timestamp"

 id: ID!

 timestamp: Int!

 count: Int!

 totalAmount: BigInt!

 totalUsdAmount: BigDecimal!

}

Hourly/Daily/MonthlyBorrow

Aggregated for borrow transactions over hourly, daily and monthly time period.

type HourlyBorrow @entity {

 "start_of_hour_timestamp"

 id: ID!

 timestamp: Int!

 count: Int!

 totalAmount: BigInt!

 totalUsdAmount: BigDecimal!

}

Querying time based aggregates

Every entity that has hourly , daily or monthly in its name can be queried by its ID. The

documentation for those is located within each entity. Below lies the rules used to create the required
timestamps.

Parameter Value

start_of_hour_timestamp unix timestamp at minute 0

start_of_day_timestamp unix timestamp at hour 0, minute 0

start_of_month_timestamp
unix timestamp at first day of the month, hour 0,
minute 0

Examples

Fetch the 5 biggest markets by total borrowed in USD

{

 assets(first: 5, orderBy: totalBorrowsUsd, orderDirection: desc) {

 symbol

 totalBorrows

 totalBorrowsUsd

 currPriceUsd

 }

}

Fetch historical interest rate, supply and borrow balances of a given market

{

 hourlyAssetSnapshots(where: {asset: "0x03ab458634910aad20ef5f1c8ee96f1d6ac54919"}, orderBy:

 id

 supplyAPY

 borrowAPY

 totalBorrowsUsd

 totalBalancesUsd

 }

}

Get the current balances of an account

{

 account(id: "0x0000000002732779240fe05873611dc4203dfb71") {

 balances {

 amount

 asset {

 symbol

 }

 }

 }

}

Get the transaction history of an account

{

 account(id: "0x0000000002732779240fe05873611dc4203dfb71") {

 balanceChanges {

 type

 timestamp

 amount

 amountUsd

 asset {

 symbol

 }

 }

 }

}

Get USD amount borrowed on February 10th 2022

First we need to create our ID using the parameters define in the section.
In this case, February 10th 2020 = 1644451200.

Querying time based aggregates

{

 dailyBorrow(id: "1644451200") {

 	 count

 totalUsdAmount

 }

}

Last 30 days of deposit amounts

{

 dailyDeposits(first: 30, orderBy: timestamp, orderDirection: desc) {

 id

 timestamp

 totalUsdAmount

 }

}

All transactions between February 1st 2022 and February 3rd 2022

{

 balanceChanges(orderBy: timestamp, orderDirection: asc, where: {timestamp_gte: 1643673600, t

 timestamp

 type

 amount

 amountUsd

 	 account {

 id

 }

 asset {

 symbol

 }

 }

}

Querying time based aggregates

Every entity that has hourly , daily or monthly in its name can be queried by its ID. The

documentation for those is located within each entity. Below lies the rules used to create the required
timestamps.

Parameter Value

start_of_hour_timestamp unix timestamp at minute 0

start_of_day_timestamp unix timestamp at hour 0, minute 0

start_of_month_timestamp
unix timestamp at first day of the month, hour 0,
minute 0

Examples

Fetch the 5 biggest markets by total borrowed in USD

{

 assets(first: 5, orderBy: totalBorrowsUsd, orderDirection: desc) {

 symbol

 totalBorrows

 totalBorrowsUsd

 currPriceUsd

 }

}

Get the current balances of an account

{

 account(id: "0x0000000002732779240fe05873611dc4203dfb71") {

 balances {

 amount

 asset {

 symbol

 }

 }

 }

}

Get the transaction history of an account

{

 account(id: "0x0000000002732779240fe05873611dc4203dfb71") {

 balanceChanges {

 type

 timestamp

 amount

 amountUsd

 asset {

 symbol

 }

 }

 }

}

Get USD amount borrowed on February 10th 2022

First we need to create our ID using the parameters define in the section.
In this case, February 10th 2020 = 1644451200.

Querying time based aggregates

{

 dailyBorrow(id: "1644451200") {

 	 count

 totalUsdAmount

 }

}

Last 30 days of deposit amounts

{

 dailyDeposits(first: 30, orderBy: timestamp, orderDirection: desc) {

 id

 timestamp

 totalUsdAmount

 }

}

All transactions between February 1st 2022 and February 3rd 2022

{

 balanceChanges(orderBy: timestamp, orderDirection: asc, where: {timestamp_gte: 1643673600, t

 timestamp

 type

 amount

 amountUsd

 	 account {

 id

 }

 asset {

 symbol

 }

 }

}

Security

Audits
View smart contract and UI audits from a number of security partners

Smart Contract Audits

The Euler protocol has been reviewed and audited by top security firms including: Halborn, Solidified and
ZK Labs, Certora and Sherlock.

Omniscia - September 2022

Audit Report

Sherlock - July 2022

Audit Report

Omniscia - June 2022

Audit Report

Omniscia - March 2022

Audit Report

Sherlock - December 2021

Note: the EulDistributor contracts audited by Omniscia in the link above were also audited by Trail of Bits in
Jun 2022 (see) as part of an audit on the Morpho smart contracts.Audit Report

Sherlock - December 2021

Audit Report

Certora - September 2021

Audit Report

Halborn - May 2021

Audit Report

Solidified and ZK Labs - May 2021

Audit Report

https://omniscia.io/reports/euler-finance-swaphub/
https://www.hacknote.co/17c261f7d8fWbdml/1821f966f40pJG_t#n_0
https://omniscia.io/reports/euler-finance-chainlink-support/
https://omniscia.io/euler-merkle-mining-staking/
https://github.com/morphodao/morpho-core-v1/tree/main/audits
https://github.com/euler-xyz/euler-audits/blob/master/smart_contract_audits/Euler_-_Sherlock_Report.pdf
https://github.com/euler-xyz/euler-audits/blob/master/smart_contract_audits/Formal_Verification_Report_for_Euler.pdf
https://github.com/euler-xyz/euler-audits/blob/master/smart_contract_audits/Euler_Smart_Contract_Security_Audit_Halborn_v_1_1.pdf
https://github.com/euler-xyz/euler-audits/blob/master/smart_contract_audits/Audit%20Report%20-%20Euler%20-%20[07.05.2021].pdf

UI Audits

PenTestPartners.com - June 2022

Audit Report

https://github.com/euler-xyz/euler-audits/blob/master/ui_audits/PenTestPartners_EulerDApp_Jun22_v1_0.pdf

Bug Bounty
Discover how to participate in the Euler Bug Bounty programme

The Euler protocol smart contracts have gone through several audits, but may still contain implicit or hidden
vulnerabilities.

We strongly encourage the community to undertake their own audits, and will reward individuals who
responsibly disclose any vulnerabilities they find. Up to $1m is up for grabs. Start hunting today!

Bugs can be reported directly or through DeFi's leading bug bounty platform Immunefi, .here here

mailto:security@euler.xyz
https://immunefi.com/bounty/euler/

Insurance
Find information about how users can insure their positions on Euler

Euler protocol has access to $10M in smart contract coverage provided by as part of a
collaborative . This also includes an audit report and a $1M ImmuneFi bug bounty provided by
Sherlock.

Sherlock
partnership

Sherlock's coverage is managed by the protocols/DAO instead of users, while its claims decisions are made
by an unbiased 3rd party.

Read more about Sherlock's insurance program at their or in their for further details.website documentation

https://mirror.xyz/0xE400820f3D60d77a3EC8018d44366ed0d334f93C/WWuglPwGDDkGgBlOt1Tz9JbPv6xhQx7lyFEeiXllcDI
https://blog.euler.finance/euler-partners-with-sherlock-for-decentralized-exploit-protection-32e522baa265
https://www.sherlock.xyz/
https://docs.sherlock.xyz/faq

Languages

White Paper (ENG-CHN)
Find out how Euler works and how it differs from other popular lending protocols

White Paper

Euler 白皮书-了解 Euler 的特别之处，与其他借贷协议又有何不同（ENG-CHN）

作者 - Authors

Michael Bentley & Doug Hoyte
https://www.euler.finance

本文翻译自@Euler 团队的关于 Euler 项目的白皮书。已得到作者的授权。译者为@chainguys。转载请注明
作者和译者。 （Coptyright©2021 by @Euler, translated by @chainguys）

概览 - Abstract

Here, we present Euler: a permissionless lending protocol custom-built to help users lend and borrow more
Ethereum-based tokens than ever before. The purpose of this white paper is to describe how Euler works at
a high level and highlight new features and innovations that help to set it apart from other popular lending
protocols, like Compound and Aave.

我们在此向您介绍 Euler:为帮助用户借贷更多基于以太坊的代币而生，去（无）审批化的借贷协议。我们在
此向您介绍 Euler:一个为了帮助更多用户更方便地借贷各类以太坊代币而出生，去（无）审批化的借贷协
议。本白皮书的目的是描述 Eule 如何在高层次上（宏观上）工作，并强调（那些）有助于将 Euler 与其他流
行的借贷协议（如 Compound 和 Aave）区分开来的新功能和创新。

导览 - Introduction

The ability to lend and borrow assets efficiently is a crucial feature of any financial system. In the world of
traditional finance, this process is typically facilitated by trusted and permissioned third-parties such as
banks, who connect people with a surplus of money to those who need access to it in the short-term. In the
world of decentralised finance (DeFi), trusted and permissioned third-parties are no longer needed; banks
have been replaced by trustless and permissionless lending protocols running on the blockchain .(1)

对任何金融系统来说，高效借贷能力都是至关重要的特征。在传统金融中，这个过程通常由可信和经审批
（监管）的第三方来完成，比如银行，由它们来连接那些资本充裕和短时间需要资金的人。在 DeFi 的世界
中，可信和经受审批（监管）的第三方将不再需要：银行已经被链上运行的去信任化和去审批化借贷协议所
取代(1)。

Among the first-generation of DeFi lending protocols are Compound and Aave . These protocols (2) (3)

https://www.euler.finance/
https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references
https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references
https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

provide users with access to lending and borrowing capabilities for a handful of the most liquid ERC20
tokens. However, these protocols were not designed to handle the risks associated with lending and
borrowing illiquid or volatile assets and have therefore relied on a permissioned listing system to protect
their users from the risks associated with such assets.

第一代 DeFi 借贷协议主要有 Compound (2) and Aave (3)。这些协议为用户提供了借贷某些流动性最好的
ERC20 代币的入口。然而，这些协议在设计中却并未考虑处理由（借贷）流动性不佳，价格有较大波动的资
产所带来的风险，所以这些协议要依赖一个需要审批的上币系统来帮用户规避这些风险。

Consequently, there remains significant unmet demand for lending and borrowing the long tail of crypto
assets. On the lending side, users want to deposit tokens to earn yield and take leveraged long positions.
On the borrowing side, users want to reduce their exposure to volatility and take leveraged short positions.
Here, we present Euler: a permissionless lending protocol custom-built with an array of new features to help
users lend and borrow more types of tokens than ever before.

从结果上来说，市场上存在着借贷长尾资产的巨大需求。在出借方的角度看，用户希望存入代币来获得收益
并且建立带杠杆的多仓。在借款方来看的角度看，用户需要减少波动性（风险）并且建立带杠杆的空仓。在
此，我们向各位介绍 Euler:一个去审批化的借贷协议——它拥有多项量身定做的新特性，可以帮助用户借贷
更多种类的代币。

准备开始 - Getting Started

Euler comprises a set of smart contracts deployed on the Ethereum blockchain that can be openly accessed
by anyone with an internet connection. Euler is managed by holders of a protocol native governance token
called Euler Governance Token (EUL). Euler is entirely non-custodial; users are responsible for managing
their own funds.

As creators of the protocol, the Euler development team have produced a convenient and user-friendly front-
end to the Euler smart contracts which is hosted at . However, users are free to
access the protocol in whatever format they wish, and we encourage developers to create their own front-
end access points to the protocol to help decentralise access and increase censorship resistance.

https://app.euler.finance

Euler 包含了一些列部署在以太坊上，任何人都可以上网公开进入的智能合约。Euler 由治理代币 Euler
Governance Token (EUL)的持有人管理。Euler 没有托管方，用户需要自己管理自己的资产。 作为该协议的
创造者，Euler 研发团队已经研发出了一个对用户友好的智能合约管理界面（https://app.euler.finance）。当
然，用户也可以用自己喜欢的方式进入协议，而且我们鼓励开发者创造他们自己的前端界面来促进去中心化
和增加抗审查性。

去审批化上币 - Permissionless Listing

Euler lets its users determine which assets are listed. To enable this functionality, Euler uses Uniswap v3 as
a core dependency . Any asset that has a WETH pair on Uniswap v3 can be added as a lending market
on Euler by anyone straight away .

(4)
(5)

Euler 让用户自行决定哪些资产可以上市。Euler 主要使用了 Uniswap V3 来实现这个功能(4)。任何在
Uniswap V3 有 WETH 交易对的资产都可以被 Euler 直接添加(5)。

https://app.euler.finance/
https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references
https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

资产梯队/分层 - Asset Tiers

Permissionless listing is much riskier on decentralised lending protocols than on other DeFi protocols, like
decentralised exchanges, because of the potential for risk to spill over from one pool to another in quick
succession. For example, if a collateral asset suddenly decreases in price, and subsequent liquidations fail
to repay borrowers' debts sufficiently, then the pools of multiple different types of assets can be left with bad
debts.

To counter these challenges, Euler uses risk-based asset tiers to protect the protocol and its users:

在去中心化借贷协议上进行去审批化上币，要比在其他 Defi 项目（如去中心化交易所）更具风险，因为风险
可能会迅速从一个流动性池传导到其他流动性池。举例来说，如果一个抵押资产的价格突然快速下降，并且
在清算中无法充分偿还借款人的债务，那么多个流动性池子都会陷入债务危机。

Isolation-tier assets are available for ordinary lending and borrowing, but they cannot be used as collateral
to borrow other assets, and they can only be borrowed in isolation. What this means is that they they cannot
be borrowed alongisde other assets using the same pool of collateral. For example, if a user has USDC and
DAI as collateral, and they want to borrow isolation-tier asset ABC, then they can only borrow ABC. If they
later want to borrow another token, XYZ, then they can only do so using a separate account on Euler.

隔离层资产可以用来常规的借贷，但是它们不能作为抵押物使用来借出别的资产，它们也只能隔离使用。这
意味着它们不能在相同抵押物的流动性池中使用。举例来说，如果一个用户用 USDC 和 DAI 来做抵押物(这
两者都不是隔离层资产)，当用户想借一种隔离资产 ABC 时，他就只能借到 ABC。如果这时要借出另一种代
币 XYZ，那么就需要在 Euler 上创建另外单独的账户（才能借到 XYZ）。

Cross-tier assets are available for ordinary lending and borrowing, and cannot be used as collateral to
borrow other assets, but they can be borrowed alongside other assets. For example, if a user has USDC
and DAI as collateral, and they want to borrow cross-tier assets ABC and XYZ, then they can do so from a
single account on Euler.

跨层资产可以用于普通借贷，可以与其他资产一起使用，但不能作为抵押物使用。举例来说，如果一个用户
用 USDC 和 DAI 做抵押物，那他可以在同一个账户内借到跨层资产 ABC 和 XYZ。

Collateral-tier assets are available for ordinary lending and borrowing, cross-borrowing, and they can be
used as collateral. For example, a user can deposit collateral assets DAI and USDC, and use them to
borrow collateral assets UNI and LINK, all from a single account.

EUL holders can vote to liberate assets from the isolation-tier and promote them to the cross-tier or
collateral-tier through governance mechanisms. Promoting assets up the tiers increases capital efficiency on
Euler, because it allows lenders and borrowers to use capital more freely, but it may also expose protocol
users to increased risk. It is therefore in EUL holders' interests to balance these concerns.

抵押层资产可以用来进行普通借贷，交叉借款，也可以作为抵押物。举例来说，一个用户可以存入 DAI 和
USDC 作为抵押物在一个账号中借到抵押层资产 UNI 和 LINK。EUL 持有者可以通过治理机制，投票决定这
三类资产如何互相转化。 将资产“上升”梯度会增加资产在 Euler 上的资金效率，因为借贷双方交易更加自由
了，但是也可能会增加协议用户暴露在风险中的几率。综合来看，EUL 持有者对这些担忧进行平衡是符合自
身利益的。

PS:关于这三种资产，虽然白皮书原文描述比较晦涩，但是核心就可以用一句话阐述：能不能用作抵押物且被

借后是否需要隔离管理。抵押层资产最方便，既可以做抵押物，但被借到之后也不需要隔离管理。跨层资产
不能作为抵押物，但是被借到之后不需要隔离管理。隔离层资产不能作为抵押物使用，被借到之后必须隔离
管理（一个子账号只能有一种隔离资产）。

借贷 - Lending and Borrowing

When lenders deposit into a liquidity to a pool on Euler, they receive interest-bearing ERC20 eTokens in
return, which can be redeemed for their share of the underlying assets in the pool at any time, as long as
there are unborrowed tokens in the pool (similar to Compound's). Borrowers take liquidity out of a
pool and return it with interest. Thus, the total assets in the pool grows through time. In this way, lenders earn
interest on the assets they supply, because their eTokens can be redeemed for an increasing amount of the
underlying asset over time.

cTokens

当出借人向流动性池中添加流动性时，他们会收到会产生利息的 ERC20 代币（eTokens），这些代币可以随
时按比例赎回他们在流动性池中的资产，只要池中还有未借出的代币（与 Compound 的 cToken 类似）。借
款方从池中借出流动性，返还时支付利息。于是，池中的资产就会随着时间而成长。如此，出借人就可以获
得利息，因为它们的 eTokens 可以溢价退出。

代币化债务 - Tokenised Debts

Similarly to Aave's , Euler also tokenises debts on the protocol with ERC20-compliant interfaces
known as dTokens. The dToken interface allows the construction of positions without needing to interact
with underlying assets and can be used to create derivative products that include debt obligations.

debt tokens

与 AAVE 的债务代币类似，Euler 也通过名为 dTokens 的，兼容 ERC20 代币的界面/接口，将债务代币化。
dToken 接口/界面使得无需和标的资产交互就可以构筑仓位，也可以用来制作包含债务凭证的衍生品。

Rather than providing non-standard methods to transfer debts, Euler uses the regular transfer/approve
ERC20 methods. However, the permissioning logic is reversed: rather than being able to send tokens to
anyone, but requiring approval to take them, dTokens can be taken by anyone, but require approval to
accept them. This also prevents users from "burning" their dTokens. For example, the zero address has no
way of approving an in-bound transfer of dTokens.

Borrowers pay interest on their loans in terms of the underlying asset. The interest accrued depends on an
algorithmically determined interest rate for each asset. A portion of the interest accrued is held in reserves to
cover the accumulation of bad debts on the protocol.

没有选择提供非标准化措施来转移债务，Euler 使用常规的 ERC20 方法。但是，这个去审批化的逻辑就反过
来了：不是等（当前）持有方同意后再发送给任何人，而是必须接收方同意后，dTokens 才可以被拿走。这
也可以防止用户燃烧 dTokens。举例来说，零余额的地址就无法允许 dTokens 转入。 借款方付出利息。而利
息的归集则取决于一个决定每类资产利息水平的算法。一部分利息会作为“风险金/储备金”而被归集到一起用
来对冲坏账。

受保护的抵押物 - Protected Collateral

On Compound and Aave, collateral deposited to the protocol is always made available for lending.

https://compound.finance/docs/ctokens
https://docs.aave.com/developers/tokens/debttoken

Optionally, Euler allows collateral to be deposited, but not made available for lending. Such collateral is
'protected'. It earns a user no interest, but is free from the risks of borrowers defaulting, can always be
withdrawn instantly, and helps protect against borrowers using tokens to influence governance decisions
(see Maker governance issue) or take short positions.(6)

在 Compound 和 Aave 上，存在协议上的抵押物是随时可以出借的。但 Euler 提供了另一个选项：抵押物可
以先存入，但并不（马上）对外出借。这样的抵押物就是“受保护”的。虽然这样用户无法收取利息，但是也免
除了默认出借所带来的风险。受保护的抵押物可以随时提现，也帮助避免有人利用代币恶意影响治理决策
（参见 Maker governance issue (6)）

展期/延期流动性 - Defer Liquidity

Normally, an account's liquidity is checked immediately after performing an operation that could fail due to
insufficient collateral. For example, taking out a borrow, withdrawing collateral, or exiting a market could
cause a transaction be reverted due to to a collateral violation.

However, Euler has a feature that allows users to defer their liquidity checks. Many operations can be
performed and the liquidity is checked only once at the very end. For example, without deferring liquidity
checks, a user must first deposit collateral before issuing a borrow. However, if done in the same transaction,
deferring the liquidity check will allow the user to do this in any order.

正常情况下，一个账户在每完成一次可能因抵押物不足而失败的操作后，都会立刻被检测流动性。举例来
说，借一笔钱，提出抵押物，或者是退出市场都可能因为抵押物（价值）波动而导致交易失败。 但是，Euler
有一个特性使得用户可以让流动性检验延期。许多操作可以被执行，流动性检测也只会在最后进行。举例来
说，如果流动性检测不延期，一个用户在发起借款之前必须先存入抵押物。但是，展期流动性检测，用户就
可以任意顺序完成上述交易。

无费用闪贷 - Feeless Flash Loans

Unlike Aave, Euler doesn't have a native concept of flash loans. Instead, users can defer their liquidity
check, make an uncollateralised borrow, perform whatever operation they like, and then repay the borrow.
This can be used to rebalance positions, build-up leveraged positions, take advantage of external arbitrage
opportunities, and more.

Because Euler only charges fees according to the time value of money, and from the blockchain's
perspective flash loans are held for a duration of 0 seconds, they are entirely free on Euler (ignoring gas
costs). We believe that flash loan fees are ultimately in a race to the bottom that will be accelerated by
advances like flash minting. The ecosystem benefits gained from simple and free flash loans outweigh the
relatively modest benefit from flash loan fees.

与 Aave 不同，Euler 并没有原生概念的闪贷。不过，用户可以延期流动性检查，使用无抵押借款，进行他们
喜欢的任何操作，最后偿还或借款。这可以被用来做仓位的再平衡，建立杠杆仓位，进行外部套利等。 因为
Euler 只根据资金的时间价值来收费，且从区块链的角度来看闪贷的持续时间为 0，所以它是没有费用的（忽
略 gas 费用）。

我们相信闪贷费用最终会在诸如闪铸（flash minting）等高级功能的加持下，最终走向底部。整个生态从简单
和免费的闪电贷中获得的系统性收益超过闪电贷费用带来的相对温和的收益。

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

风险调整借款能力 - Risk-adjusted Borrowing Capacity

Like other lending protocols, Euler requires users to ensure that the value of their collateral remains higher
than the value of their liabilities (except during the intermediate period when liquidity checks have been
deferred). Over-collateralisation is encouraged by limiting how much borrowers can take out as a loan in the
first place.

Compound achieves this in a one-sided way by using collateral factors to adjust down the value of a
borrower's collateral assets when deciding how much they can borrow. This gives rise to a 'risk-adjusted
collateral value' that helps to create a buffer that can be drawn upon by liquidators in the event that the value
of a borrower's assets and liabilities changes over time. One of the problems with this approach is that it only
adjusts for the risks associated with a borrower's collateral assets decreasing in value. There may be an
asymmetric risk, however, of the borrower's liabilities increasing in value. This risk is not factored into the
collateral factors.

跟其他借贷协议一样，Euler 需要用户确保他们的抵押物的价值比他们的债务更高（除非在流动性检查延期的
时候）。Euler 一开始就通过限制借款人的借款额来鼓励超量抵押。 Compound 使用一种单向的方法：当决
定一个用户能借多少钱的时候，平台会根据抵押参数(因子)来做低抵押物的价值。这样会使得“风险调整后抵
押物价值”上升，从而形成一个缓冲带——清算人可以据此在借款人的资产或者负债变化的时候（主动管
理）。但一个问题是这样总会向借款人抵押物资产贬值的方向调整。于是就可能存在一个非对称风险，借款
人的负债在增加，但这没有作为抵押参数进行考虑。

On Euler, we therefore use a two-sided approach where we also adjust up the market value of a borrower's
liabilities to arrive at a 'risk-adjusted liability value'. This approach improves capital efficiency on the protocol
because it allows Euler to factor in the asset-specific risks of both downside and upside price movements.
These risks are encapsulated in asset-specific collateral factors (as on Compound) and borrow factors (new
to Euler). Ultimately, this approach means that the liquidation threshold of every borrower is tailored to the
specific risk profiles associated with the assets they are borrowing and using as collateral.

To give an example, suppose a user has $1000 worth of USDC, and wants to borrow UNI. How much can
they borrow? If USDC has a collateral factor of 0.9, and UNI has a borrow factor of 0.7, then a user can
borrow upto $1000 0.9 0.7 = $630 worth of UNI. At this level of borrowing, the risk-adjusted value of their
collateral is $1000 * 0.9 = $900, and the risk-adjusted value of their liabilities is $630 / 0.7 = $900. If UNI
increases in price, then the risk-adjusted value of their liabilities will also increase to >$900, and the they
will be eligible for liquidation. The buffer allowing for liquidation is $1000 - $630 = $370.

在 Euler,我们使用一种双向的方法：我们也将借款人债务的市场价值上调，来产生“风险调整后抵押物价值”。
这使得资本使用效率大大提升——因为它使得 Euler 将资产价值涨跌这两种情况带来的风险都考虑进来。这
些风险有的被概括为特定的抵押物因子（类似 Compound），有的则作为借贷因子（Euler 的创新）。最
终，这一套方法意味着每个借款人的清算条件都是根据他们自身借入和抵押品资产情况量身定做。 举例来
说，假设一个用户有价值 1000USDC 的抵押物，然后他想借入 UNI。那他可以借出多少钱？如果 USDC 有
一个抵押参数 0.9，而 UNI 则有一个 0.7 的抵押参数，那么用户就可以借价值$1000_0.9_0.7=$630 的 UNI。
在这个情况下，风险调整后价值就是$1000*0.9=900 美金，而风险调整负债就是$630/0.7=$900。如果 UNI
价格上涨，那么风险调整负债也会增加，大于$900，并且会作为清算资产。这时清算的缓冲是$1000-$630 =
$370。

去中心化价格预言机 - Decentralised Price Oracles

To be able to calculate whether a loan is over-collateralised or not, Euler needs to monitor the value of

users' assets. On Compound, Maker, and Aave, various systems are used to get prices from off-chain
sources and put them on-chain so that they can be accessed by the relevant smart contracts.

This approach is unsuitable for Euler's purposes because it requires centralised intervention whenever a
new lending market needs to be created. Euler therefore relies on Uniswap v3's decentralised time-
weighted average price (TWAP) oracles to assess the solvency of users . The reference asset used to
normalise prices on Euler is Wrapped Ether (WETH), which is the most common base pair on Uniswap .

(4)
(5)

要能够计算一笔贷款是否超额抵押，Euler 需要监控用户资产价值。在 Compound,Maker 和 Aave 上，各类
系统被应用，来从链下获得价格信息并且将其上传到链上，从而使得相关智能合约能够访问。 这个方法对实
现 Eculer 的目的来说就不适合了，因为每当要创造一个新的借贷市场时，就会需要一个中心化的干预（审
批）。Euler 因此使用 Uniswap v3 的去中心化时间加权平均价格（TWAP）预言机来评估用户的偿付能力
(4)。Euler 作为标准化定价单位的是 Wrapped Ether (WETH),这是 Uniswap 最常见的基础交易对(5)。

TWAP

Uniswap TWAP is calculated using the geometric mean price of an asset over some interval of time. TWAP
in general is both a smoothed and lagging indicator of the trade price: a TWAP over a short interval is a less
smooth function, but more up-to-date, whilst a TWAP over a long interval is a smoother function, but less up-
to-date. TWAP is ideal for Euler's purposes for several reasons.

Uniswap 的时间加权平均价格（TWAP）是由某项资产在某几个时间段的几何平均数计算出来的。一般来
说，TWAP 是一个对交易价格既平滑也相对滞后的指标：一个短期的 TWAP 是一个不那么平滑的函数，但是
却更具时效性；但长期的 TWAP 看起来更加平滑，时效性却相对差一些。TWAP 对 Euler 来说是非常理想
的，原因如下：

First, TWAP is resistant to price manipulation attacks. It cannot be manipulated within a transaction or block
(for example with flash loans or flash bots), because it is calculated using historic data. It is also expensive
to manipulate using large market orders, because the manipulated price must be maintained for some
period of time relative to the TWAP time interval. During this time, other users can take advantage of the
manipulated price with arbitrage which will cause it to revert back to the broader market price. Arbitrage is
especially practical on the blockchain because arbitrageurs have access to large amounts of capital
(including from flash loans) and the atomic nature of transactions means that arbitrage transactions have a
low execution risk. For these reasons, manipulating the price on a single decentralised exchange usually
requires more widespread manipulation of all on-chain exchanges simultaneously, although even this can't
prevent the (less practical but still possible) arbitrage between on and off-chain exchanges.

首先，TWAP 可以对抗价格操纵攻击。用（一笔）链上交易和区块是不能操纵市场的的（比如用闪贷等手
段），因为使用的是历史数据。如果要通过市场大单来操纵，那会非常昂贵，因为这需要内操纵的价格在
TWAP 的时间段内维持一定时间的稳定。在这段时间内，其他用户就可以利用这个情况来套利，接着价格就
会回归。套利在区块链中是非常具有可操作性的，因为套利者一般资金充沛，而（区块链）的原子化交易又
意味着套利交易在执行上的风险很低。因为上述原因，在一个去中心化交易所里操纵价格经常意味着要在更
大的规模上同时操控所有的链上交易所（实际上更不可能但是理论上成立），但即使是这样还是无法阻止链
上链下的套利行为。

Second, the smooth nature of TWAP helps to remove the impact of price shocks on borrowers. In the event

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references
https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

of a large trade, the current price on Uniswap can be moved significantly. Usually arbitrage bots will quickly
converge this to the broader market value, so the maximum deviation of the TWAP will only be a fraction of
the temporary price movement. This prevents some unnecessary liquidations and loans that may quickly
become undercollateralised.

Third, instead of instantly jumping between two price levels, TWAPs change continuously, second-by-
second. This property is used by Euler's liquidation process to implement Dutch auctions that reduce the
value captured by miners and front-running bots.

其次，TWAP 平滑的天性可以帮助移除价格冲击对借款人的影响。假如有大单，Uniswap 的当前价格就会迅
速变化。通常情况下套利机器会迅速使得（Uniswap）的价格和其他市场（更广泛市场）的价值趋同，所以
这个最大的波动（偏离）在 TWAP 上就仅仅只是一个暂时价格变动的一部分。这样的机制就可以防止一些不
必要的，会迅速变得抵押不足的清算或贷款。

时间间隔 - Time Interval

One of the challenges in using TWAP is determining the right interval over which it should be calculated for
a given asset. The trade-offs involved with shorter (longer) intervals may sometimes need to be taken into
consideration and altered for specific assets. Euler therefore allows the default time interval to be updated
by governance if EUL holders deem it necessary.

清算 - Liquidations

A borrower is considered to be in violation on Euler when the value of their risk-adjusted liabilities exceeds
the value of their risk-adjusted collateral. A borrower that has just become in violation still has enough
collateral to repay their loan, but is adjudged to be at risk of defaulting on their loan. Consequently, they may
be liquidated in order to limit the potential for them to default.

当 Euler 用户的风险调整后负债超过了风险调整后债务时，就会被认为“违约”了。一个借款人刚刚进入“违
约”状态时依然有足额的抵押来偿付它的贷款，但是会有被调整到可能无法偿付贷款的风险。结果来说，为了
防止他们违约，就可能会对他们进行清算。

MEV 抵抗 - MEV-resistance

On Compound and Aave, liquidations are incentivised by offering up a borrower's collateral to liquidators at
a fixed percentage discount, which typically ranges between 5-10%. One of the issues with this strategy is
that would-be liquidators often have no choice but to engage in priority gas auctions (PGA) for profitable
liquidations, which exposes the liquidation bonus as so-called miner extractable value (MEV) . Another
issue with this approach is that a fixed discount can be punitive for large liquidations, and therefore
discourage large borrowers, whilst being insufficient to cover costs and incentivise smaller liquidations.

(7)

在 Compound 和 Aave 上，系统给出 5%-10%抵押物的折扣来奖励清算人。这个策略的问题之一就是清算人
常常别无选择,只能为了进行有利润的清算而参与 Gas 优先拍卖（priority gas auctions,PGA），这样就引发
了“矿工可提取价值”（ miner extractable value, MEV）的问题(7).。另一个问题是这样提供一个固定折扣的方
法对大型清算成本过高，也（变相）阻碍了借款人（继续借款），同时小型清算又变得费用不足，激励不
够。

To remedy these issues, Euler uses a different approach. Rather than a fixed discount percentage, we allow

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

the discount to rise as a function of how under-water a position is. This turns a one-shot opportunity, where
liquidators have no option but to engage in a PGA, into a type of Dutch auction. As the discount slowly
increases, each would-be liquidator must decide whether or not to bid for a liquidation at the current
discount on offer. Liquidator A might be profitable at 4%, but liquidator B might run a more efficient operation
and be able to jump in sooner at 3.5%. The Dutch auction is aided by the TWAP oracles used on Euler,
because a shock to the price does not bring with it a singular point at which every liquidator becomes
profitable all at once. Instead the price moves more smoothly over time leading to a continuum of
opportunities to liquidate, which further helps to limit PGAs. Overall, this process should help to drive the
discount price towards the marginal operating cost of liquidating a borrower.

为了解决这些问题，Eluer 采用了不同的方式。我们不采用固定折扣，而是采用一个公式来确定某个仓位到
底“缩水”多少。这是“一锤子买卖”，清算人从别无选择参与 PGA 变成参与一种荷兰式拍卖。随着折扣慢慢增
加，每个有意参与的清算者必须在当前的折扣水平下做出是否参与的决断。清算人 A 也许在 4%折扣时就可
以盈利，但是清算人 B 的行动效率可能更高，在 3.5%折扣的时候就会果断出手。荷兰式拍卖会受到 Euler 上
TWAP 预言机的协助，因为一个价格冲击并不会使得价格立刻到达一个每个清算人都会盈利的奇点。随着时
间变长，价格只会变得更加平滑，从而产生一系列可以清算的机会，而这还会限制 PGA。总的来说，这个过
程会使得折扣价格和清算借款人的边际成本趋同。

However, by itself, this process does not prevent MEV, because miners and front-runners can still steal a
liquidator's transaction. To limit this form of MEV, we allow liquidity providers on Euler to make themselves
eligible for a "discount booster", which allows them to become profitable in the Dutch auction before miners
and front-runners (who do not have the booster).

然而，这个过程自身并不能防止 MEV，因为矿工和抢跑者可能会偷掉一笔清算人的交易。要限制这种
MEV，Euler 会给流动性提供者一个“折扣推进器”，让他们在荷兰拍卖期间就可以盈利（矿工和抢跑者则不
行，因为没有这个“推进器”）。

稳定池 - Stability Pools

On other lending protocols liquidations are usually processed using an external source of liquidity. That is, a
liquidator will generally source the repayment amount of the borrowed assets from a third-party exchange,
repay the loan, and receive the collateral and any bonus for themselves. One of the downsides of this
approach is that the price feed used to determine the liquidation price of a borrower will not always
accurately reflect the exchange rate on external markets, meaning that liquidators will not always be able to
liquidate at that price. Reasons for this include slippage, swap fees, extreme volatility, the use of price-
smoothing algorithms such as TWAP (as on Euler), and delays posting new prices.

在其他借贷协议中，清算中经常使用外部的流动性。也就是说，一个清算人一般会从第三方交易所借入资
金，来偿付（被清算人的）债务，然后接管抵押物和奖励。这其中不好的一点，就是借款人的清算执行价格
并不总是能准确反应外部市场的汇率，这意味着清算人并不能总是以这个价格执行清算。这种现象的原因有
很多，比如滑点，交易费用，极端波动，TWAP 等算法的应用（Euler 也使用 TWAP），报价延迟等。

To alleviate this issue, Euler enables lenders to support liquidations by providing liquidity to a stability pool

associated with each lending market. Liquidity providers in the stability pool deposit eTokens and earn
interest whilst they wait for liquidations to be processed. An unstaking period prevents them from moving
assets in and out of the pool to try to game the system. When a liquidation is processed the liquidator uses
liquidity from the stability pool to cancel a borrower's debts and they return discounted collateral to the
stability pool in return (minus a fee, which they keep for themselves). Stability pool liquidity providers
essentially end up swapping their eTokens for a discounted index of collateral assets.

要解决这些问题，Euler 允许出借人对清算人提供支持，方式就是出借人向每个借贷市场的稳定池注入流动
性。稳定池的流动性提供者存入 eTokens 然后获得利息，同时等待清算发生。为了保持系统稳定，不被恶意
操纵，存入 eTokens 后需要一定时间之后才能提出。当一笔清算发生时，清算人将使用稳定池的资金来偿还
借款人的债务，然后抵押物也会（按比例）存入稳定池（扣除归属清算人其他费用后）。稳定池的流动性提
供者最终可以用 eTokens 交换（池中）相应的抵押物资产。

This approach can be thought of as an extended multi-collateral form of the stability pool idea pioneered by
Liquity protocol . The main advantage of using a stability pool is that liquidations can be processed
immediately using an internal source of liquidity at the point at which a borrower is deemed by the protocol
to be in violation, without a liquidator needing to source the assets themselves from a third-party exchange.
See Table 1 for some of the benefits of performing liquidations using internal versus external liquidity.

(8)

这被认为是多渠道抵押稳定池形式的一种扩展， Liquity protocol (8) 是这方面的先驱。使用稳定池主要的好
处是，在借款人因被认为“违约”而面临清算时，可以使用内部流动性来进行清算，清算人则不必向外部/第三
方交易所寻求资源。具体的好处请查看表 1：

Table 1. Comparison of using an internal stability pool for liquidations rather than using an external source
of liquidity.

Text External Internal

Liquidity source
Liquidator typically purchases
from a DEX or has existing
source of funds themselves

Liquidator uses internal liquidit
in the stability pool

Transaction costs
Gas costs may be high for DEX
trades and cross-contract calls

Gas costs often relatively chea
for internal token transfers

Explicit trade costs Swap fees No swap fees

Implicit trade costs Slippage on illiquid markets No slippage

Liquidation price
Liquidation expected to take
place at price determined by the
wider market

Liquidation expected to take
place at price determined by th
internal price feed

Liquidation timing

Liquidation expected to take
place only after the dynamic
discount exceeds operating
costs and trade costs

Liquidation expected to take
place soon after the dynamic
discount exceeds the operating
cost of liquidation

Table 表 1. 使用内部/外部资源进行清算的比较:

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

文字 外部 内部

清算资源
清算人大部分从其他 DEX 购入
或者有外部资金支持

清算人使用稳定池的内部流动性

转账费用
Gas 费用在不同的 DEX 或者智
能合约间可能会很贵

内部转账的 gas 一般更加便宜

显性交易成本 闪兑（swap）费用 没有闪兑（swap）费用

隐形交易成本 流动性不佳产生的滑点 没有滑点

清算价格
清算预计以外部价格（更广泛市
场的价格）展开

清算预计以内部价格展开

清算时机
只能在动态折扣超过执行成本和
交易成本后执行

动态折扣超过执行成本和交易成
本后就能迅速执行

软性清算 - Soft Liquidations

The fraction of a borrower's debt that can be paid off by liquidators in one go is referred to by Compound as
the `close factor.' On both Compound and Aave, the close factor is currently fixed at 0.5, meaning liquidators
can pay off upto half a borrower's loan in one go regardless of how underwater their position is. This
approach has a couple of potential drawbacks.

一个清算人能够一次性偿还借款人债务的比例在 Compound 上叫做“偿还因子”。在 Compound 和 Aave 上，
偿还因子目前是固定的 0.5，这意味着清算人可以最多一次性偿还借款人 50%的贷款，不管借款人的抵押物
如何“缩水”。这种方式有一些潜在的不宜之处。

First, allowing liquidators to liquidate half a loan could be considered excessive if a smaller liquidation
would have been sufficient to bring the borrower back to health. Larger borrowers are likely to be put off by
such a process. Second, a large fixed discount can sometimes drive a borrower closer to insolvency and
disincentivise them from repaying their loans (see).(8)

首先，如果一个小型清算就足以使得借款人的（仓位）回到健康状态，那让清算人清算一半的贷款就显得比
较“过”了。规模大一些的借款人对样的清算方式可能不感兴趣。其次，一个大额固定折扣会让借款人更接近资
不抵债的状况，从而打消他们偿还贷款的积极性。

On Euler, we therefore use a dynamic close factor to try to `soft liquidate' borrowers. Specifically, we allow
liquidators to repay up to the amount needed to bring a violator back out of violation (plus an additional
safety factor). This means that borrowers who are only slightly in violation will often have much less than
half their debts repaid during a liquidation, whilst borrowers who are heavily in violation will often have
much more than half their debts repaid during a liquidation (their whole position might be closed in some
circumstances).

在 Euler，我们选择采用动态偿还因子来对借款人进行软性清算。具体来说，我们允许清算人偿还债务到违约

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

的临界点（再附加一些其他的安全因子修正）。这就意味着那些只是轻微违约的人在清算时往往偿还的比例
要显著小于 50%，当然同时严重违约的借款人就要在清算时偿还显著高于 50%的比例（某些情况下仓位可能
被关闭）

储备 - Reserves

In rare circumstances the value of a borrower's collateral might become less than the value of their liabilities.
In this situation the borrower is said to be 'insolvent.' Insolvent borrowers will typically be liquidated
repeatedly until they have little to no collateral left. Any leftover liabilities after liquidations have stopped can
be considered 'bad debt' that we can assume will never be repaid. If bad debt accumulates on the protocol, it
increases the chance that lenders might all rush at once to withdraw their funds (to avoid becoming the
bearer of the bad debt). This phenomenon is known as `run on the bank.'

在一些极少的情况下，借款人的抵押物（价值）会低于他们的债务。在这种情形下，借款人就“资不抵债”。资
不抵债的借款人一般会被反复清算直到他们只有极少的抵押物留存。任何清算停止后还存留的债务就成为“坏
账”，我们基本可以认为“坏账”无法清偿。如果池中的坏账持续累积，就会增加出借人挤兑的风险（为了避免
成为坏账的最终承担者而在同一时间大量提出资产）。

To reduce this risk, Euler follows Compound by allowing a portion of the interest paid by borrowers in each
market to accumulate into a reserve. The idea behind this is to allow the reserves to act as a lender of last
resort in the event of a run on the bank. Providing that reserves accumulate at a faster pace than bad debt,
lenders do not need to worry about being able to withdraw their funds. Euler reserves operate similar to
those on Compound, except that Euler reserves are tracked in eToken units, rather than underlying units,
which means that Euler reserves earn interest automatically whereas Compound reserves do not.

为了减少这个风险，Euler 向 Compound 取经，将借款人在市场中支付利息的一部分积累起来，成为了储备
金。这么做背后的想法是当挤兑发生时让储备金成为最后的出借人。只要储备金的增速高于坏账的增速，那
么出借人就没有必要担心是否能取出自己的资产。Euler 的储备金与 Compound 的类似，但 Euler 储备金以
eTokens 为单位来追踪（价格），而不是标的资产，这意味着 Euler 的储备金会自动获取利息，而
Compound 储备金则不会。

The proportion of interest paid into the reserves is called the `reserve factor' and it is a parameter specific to
each lending market. There are trade-offs to consider when setting the reserve factor. A reserve factor of
zero would mean no reserves accrue, which could stifle lending because of the bad debt issue.
Nevertheless, a high reserve factor would mean a large portion of interest is diverted away from lenders,
which could also stifle lending as lenders seek a better rate elsewhere. Thus EUL holders may wish to use
governance to select a reserve factor that balances these trade-offs for each type of asset.

利息存入储备金的比例就叫做“储备因子”，而且每个特定的借贷市场都不相同。设置储备因子有一些问题需要
取舍。如果储备因子为 0，则意味着不归集储备金，这可能会因为坏账和伤害出借方（积极性）。然而，储
备因子如果太高，那就意味着大部分的利息从出借方流失了，从而也会损伤出借方（积极性）——他们可能
就去别的地方寻求更好的回报率了。所以，EUL（Euler 治理代币）的持币人可能就需要在治理时选择能够平
衡上述情况的储备因子。

清算的额外费用 - Liquidation Surcharge

During a liquidation, the liquidator is required to provide a slightly larger amount of the borrowed asset than

is being repayed on behalf of the violator. This extra amount is contributed to the reserves for the borrowed
asset as a fee. The base liquidation discount starts at the level of this fee, so it is ultimately paid by the
violator.

As a result, more volatile assets, which generally trigger more liquidations, will tend to accrue reserves at a
faster pace than less volatile assets helping to protect lenders of those assets. Additionally, this fee ensures
that 'self-liquidating' is always net-negative, which adds a profitability threshold that some undesirable
manipulation strategies are unlikely to meet.

在清算的时候，清算者需要代表违约者来证明已经借出的资产比要偿还的要稍微多一些。这些多余的就会当
做已借资产的保证金费用。基础清算折扣就从这个费用的水平开始（计算），最后由违约者偿付。 最终，越
来越多的违约资产会引发更多的清算，（也会）导致归集保证金的速度比更少违约资产保护出借人的速度
快。此外，这个费用还保证了“自清算”永远为净负值，从而为我们不愿见到的某些市场操纵行为添加了利润上
的门槛。

利率 - Interest Rates

Both Compound and Aave use static linear (or piecewise linear) interest rate models to guide the cost of
borrowing on their protocols. Broadly speaking, as demand for borrowing from the pool increases or supply
decreases, interest rates go up, and when supply increases or the demand for borrowing decreases, interest
rates go down.

Static models work well if they are appropriately parameterised ahead of time, but can be problematic when
parametrised incorrectly. For example, if the slope of the static linear function is too shallow, it can lead to
the cost of borrowing being underpriced, with lenders unable to withdraw their assets because a pool has
become over-utilised. On the other hand, if the slope of the static linear function is too steep, it can lead to
the cost of borrowing being too expensive, which can stifle borrowing and lead to low capital efficiency.

Compound 和 Aave 都使用静态线性（或分段线性）利率模型来指导协议中的借款成本。宽泛地来说，随着
池中借款需求的升高或者供给的降低，利率就会下降。 如果提前设置好了恰当的参数，静态模型就会较为有
效，但如果参数设置不好，就会有问题。举例来说，如果静态线性函数的斜率太平缓，就会导致借款成本被
低估，出借人就会因池中（资产）被超额使用而无法提现自己的资产。相反，如果斜率太陡，就会导致借款
成本过高，妨害借款人借款，也影响出借人资金利用效率。

回应式汇率 - Reactive Interest Rates

To avoid the problem of having to choose the right parameters for every lending market, Euler uses control
theory to help autonomously guide the cost of borrowing towards a level that maximises capital efficiency on
the protocol. Specifically, we use a PID controller to amplify (dampen) the rate of change in interest rates
when utilisation is above (below) a target level of utilisation. This gives rise to reactive interest rates that
adapt to market conditions for the underlying asset in real-time without the need for ongoing governance
intervention. A similar approach has also recently been described by the Delphi Labs team .(9)

为了避免强行为每个借贷市场都单独设定“正确”的参数（因为这样做耗费精力和各项成本都很巨大），Euler
采用了控制论来帮助指导借款成本达到一个最大化资本利用率的水平。具体来说，当利用率高于某个目标水
平时，我们使用一个 PID 控制器来调整利率变化的幅度。无需持续干涉，就提升了回应式利率实时响应标的
资产市场情况的能力(9)。

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#references

复利 - Compound Interest

Compound interest is accrued on Euler on a per-second basis. This differs from other lending protocols,
where interest is typically accrued on a per-block basis. A per-second basis is generally expected to perform
more predictably in the long-run even if upgrades to Ethereum lead to changes in the average time between
blocks.

Euler 上的复利是按秒归集的。这就和其他以区块归集复利的借贷协议不一样。以秒计算从长期来看更加有可
预测性，即使因以太坊更新导致按区块间平均（出块）时间来计算。

最优化 - Gas Optimisations

Euler’s smart contracts minimise the amount of storage used, implement a module system to reduce the
amount of cross-contract calls, and have had a number of other gas usage optimisations applied. This
makes the protocol cheaper on most operations than other lending protocols.

Euler 的智能合约将存储用量最小化，并且实施了一个模块系统来减少智能合约间的（无效）交互，（除了这
些）还应用了一系列其他优化 gas 的措施。这使得整个协议在大部分运营成本上都比其他协议更廉价。

交易建设者 - Transaction Builder

The user interface includes a convenient tool to help users batch up multiple transactions and reduce their
gas costs, which we call a transaction builder. Advanced users can use this feature in conjunction with a
defer liquidity option provided on the protocol to rebalance loans or perform flash loans.

用户界面包含了一套方便的，被称作交易建设者的工具来帮助用户管理多笔交易和减少 gas 费用。高级用户
可以利用这个特性，来连接协议提供的延期清算选项，从而实现贷款的再平衡或实行闪贷。

子账号 - Sub-accounts

Asset tiers help to isolate risks on Euler, but they open up a new user-experience problem. Specifically, it
would quickly become cumbersome for borrowers to use Euler if they had to send collateral to a new
Ethereum account for each new isolation-tier loan they wanted to take out.

Euler therefore enables every Ethereum account using the protocol to access up to 256 sub-accounts
(including the primary account), which can be used to cost-effectively manage multiple positions at the same
time. A user only needs to approve Euler's access to a token once and can then deposit into any sub-
account. Additionally, no approvals are required to transfer assets and liabilities between sub-accounts,
which allows users to isolate and segregate their collateral and debts as desired.

资产分层帮助隔离 Euler 上的风险，但是产生了一个用户体验的新问题。具体来说，如果用户每次都要把抵
押物转账到新的以太账号上，那确实太繁琐了。Euler 于是采用了一个可以同时有效管理多账号的新办法：允
许每个使用（Euler）协议的以太账号使用最多 256 个账号（含主账号）。除此之外，子账号之间转移资产和
债务是不需要批准的，这也使得用户能按照自己的意愿隔离和配置他们的资产和债务。

治理 - Governance

Euler will broadly follow the governance model pioneered by Compound . The protocol will be managed (10)

https://github.com/euler-xyz/euler-docs/blob/master/languages/white-paper.md#ref10

by holders of a protocol native governance token called Euler Governance Token (EUL). EUL tokens will
represent voting shares. Holders with enough EUL tokens will be able to make a formal proposal for change
on the protocol. Token holders will then be able to vote on the proposal themselves or delegate their vote
shares to a third party. Examples of the kinds of decisions token holders might vote on include proposals to
alter include:

The tier of an asset

Collateral and borrow factors

Price oracle parameters

Reactive interest rate model parameters

Reserve factors

Governance mechanisms themselves

Euler 在治理方面会较多采用 Compound (10) 提出和发展的一些方式。Euler 会被持有原生治理代币 Euler
Governance Token (EUL)的人管理。EUL 代币将代表投票的比例。有足够数量 EUL 代币的人能够提出改变
协议（治理）的正式提案。代币持有人也能够将投票权让渡给第三方。以下是持币人可能投票的内容：

资产分层

抵押物和借款因子

价格预言机参数

回应式利率模型的参数

储备因子

治理机制本身

鸣谢 - Acknowledgements

With special thanks to , , , , , ,
, Ayana Aspembitova and the team, , Lev Livnev, and .

Shaishav Todi Luke Youngblood Charlie Noyes samczsun Hasu Dave White Rick
Pardoe Delphi Labs Mariano Conti Chainguys

特别感谢以下诸位 , , , , , ,
, Ayana Aspembitova and the team, , Lev Livnev, and .

Shaishav Todi Luke Youngblood Charlie Noyes samczsun Hasu Dave White Rick
Pardoe Delphi Labs Mariano Conti Chainguys

引用文献 - References

1 https://docs ethhub io/built-on-ethereum/open-finance/what-is-open-finance/

https://twitter.com/shaishav0x
https://twitter.com/LukeYoungblood
https://twitter.com/_charlienoyes
https://twitter.com/samczsun
https://twitter.com/hasufl
https://twitter.com/_Dave__White_
https://twitter.com/rick_liquity
https://twitter.com/Delphi_Digital
https://twitter.com/nanexcool
https://twitter.com/Chainguys
https://twitter.com/shaishav0x
https://twitter.com/LukeYoungblood
https://twitter.com/_charlienoyes
https://twitter.com/samczsun
https://twitter.com/hasufl
https://twitter.com/_Dave__White_
https://twitter.com/rick_liquity
https://twitter.com/Delphi_Digital
https://twitter.com/nanexcool
https://twitter.com/Chainguys
https://docs.ethhub.io/built-on-ethereum/open-finance/what-is-open-finance/

1. https://docs.ethhub.io/built on ethereum/open finance/what is open finance/

2. https://compound.finance/documents/Compound.Whitepaper.pdf

3. https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf

4. https://uniswap.org/whitepaper-v3.pdf

5. https://weth.io/

6. https://www.theblockcrypto.com/post/82721/makerdao-issues-warning-after-a-flash-loan-is-used-to-
pass-a-governance-vote

7. https://research.paradigm.xyz/MEV

8. https://docsend.com/view/bwiczmy

9. https://members.delphidigital.io/reports/dynamic-interest-rate-model-based-on-control-theory

10. https://medium.com/compound-finance/compound-governance-5531f524cf68

https://docs.ethhub.io/built-on-ethereum/open-finance/what-is-open-finance/
https://compound.finance/documents/Compound.Whitepaper.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://uniswap.org/whitepaper-v3.pdf
https://weth.io/
https://www.theblockcrypto.com/post/82721/makerdao-issues-warning-after-a-flash-loan-is-used-to-pass-a-governance-vote
https://research.paradigm.xyz/MEV
https://docsend.com/view/bwiczmy
https://members.delphidigital.io/reports/dynamic-interest-rate-model-based-on-control-theory
https://medium.com/compound-finance/compound-governance-5531f524cf68

Community Translations
Read the Euler white paper in different languages.

Members from the Euler community have translated the white paper into a number of other languages
below. These are not hosted by official channels nor fully verified for word-for-word accuracy, but they may
be used as reference to better understand the white paper.

Community translators' efforts are greatly appreciated! Feel free to submit other translations to the Euler
community .Discord

Korean: https://m.blog.naver.com/PostView.naver?blogId=ahrmina&logNo=222627632140&proxyReferer=

Japanese: https://www.notion.so/Euler-Whitepaper-Japanese-044d74772b3541c58ba9b644c27e6b7c

Russian: https://gitbook-guru.gitbook.io/euler/white-paper

Ukrainian: https://medium.com/@nina_b33/white-paper-ed9cfb390c2

https://discord.com/invite/vyaufngA7n
https://m.blog.naver.com/PostView.naver?blogId=ahrmina&logNo=222627632140&proxyReferer=
https://www.notion.so/Euler-Whitepaper-Japanese-044d74772b3541c58ba9b644c27e6b7c
https://gitbook-guru.gitbook.io/euler/white-paper
https://medium.com/@nina_b33/white-paper-ed9cfb390c2

Legal

Terms and Conditions

Terms of Use

Please read these terms of use carefully before you start to use our Website, as these will apply to your use
of our Website. We recommend that you print a copy of this for future reference. By using our Site, you
confirm that you accept these terms of use and that you agree to comply with them. If you do not agree to
these terms of use, you must not use our Site.

1. Your Relationship With Us

1.1 Welcome to and (the “Website”), provided by The Euler Foundation
(“Company”, “we” or “us”). The Company is registered in the Cayman Islands and our registered office is at
4th Floor, Harbour Place, 103 South Church Street, P.O. Box 10240, Grand Cayman KY1-1002, George
Town, Cayman Islands.

euler.finance app.euler.finance

1.2 This page (the “Terms”) forms an agreement between you and us and sets forth the terms and conditions
by which you may access and use our protocols, applications and content (including but not limited to the
Website) (collectively, the “Interface”). For purposes of these Terms, “you” and “your” means you as the user
of the Interface.

1.3 The Terms form a legally binding agreement between you and us. Please read them carefully and
we recommend that you seek legal advice on these Terms to understand your use of the Interface. If you do
not agree to these Terms, you must not access or use the Interface.

2. Interface

2.1 The Interface provides functionality for you to interact with the Euler Protocol (a permissionless non-
custodial protocol for the lending and borrowing of Ethereum-based crypto assets). The Interface also
provides the following non-custodial functions, including: depositing, withdrawal, minting, burning,
transferring, swapping, and shorting of crypto assets.

2.2 For the avoidance of doubt, the Company does not control or operate the Euler Protocol and that
protocol is managed, controlled and operated by the holders of the protocol-native governance tokens called
the Euler Governance Token (“EUL”). For further information on the Euler Protocol, please visit:

. Such information is provided for informational purposes only and we do not make any
representation or warranty in any form whatsoever in relation to such information.
docs.euler.finance

2.3 Holders of EUL are not granted any legally enforceable rights or entitlements. Rather, the Euler Protocol
may enable them to make certain proposals with respect to the Euler Protocol for all EUL holders to perform
several functions.

3. Fees

https://www.euler.finance/
https://app.euler.finance/
https://docs.euler.finance/

3.1 Neither the Company, nor any of its parents, subsidiaries, and affiliates, and each of their respective
officers, directors, employees, agents and advisors, charges or receives any form of fee from any user of the
Euler Protocol for operating, maintaining or developing the Interface.

4. Accepting the Terms

4.1 By accessing or using the Interface, you confirm that you can form a binding contract with us,
that you accept these Terms and that you agree to comply with them. Your access to and use of the
Interface is also subject to our Privacy Policy, the terms of which can be found directly on the Website, and is
incorporated herein by reference. The Interface may directly or indirectly collect and temporarily store
personally identifiable information for operational purposes, including for the purpose of identifying
blockchain addresses or IP addresses that may indicate use of the Interface from prohibited jurisdictions or
by sanctioned persons or other Prohibited Uses. Except as required by applicable law, there will be no
obligation of confidentiality with respect to any information collected.

4.2 If you are accessing or using the Interface on behalf of a business or entity, then (a) “you” and “your”
includes you and that business or entity, (b) you represent and warrant that you are an authorized
representative of the business or entity with the authority to bind the entity to these Terms, and that you
agree to these Terms on the entity’s behalf, and (c) your business or entity is legally and financially
responsible for your access or use of the Interface.

4.3 You can accept the Terms by accessing or using the Interface. You understand and agree that we will
treat your access or use of the Interface as acceptance of the Terms from that point onwards.

4.4 You should print or save a local copy of the Terms for your records.

5. Changes to These Terms and to the Interface

5.1 We may amend these Terms from time to time, for instance when we update the functionality of the
Interface or when there are regulatory changes. We may use commercially reasonable efforts to generally
notify all users of any material changes to these Terms, such as through a notice on the Interface, however,
you should look at the Terms regularly to review the most up-to-date version and to check for such changes.
We will also update the “Last Updated” date at the top of these Terms, which reflect the effective date of such
Terms. Your continued access or use of the Interface after the date of the new Terms constitutes your
acceptance of the new Terms. If you do not agree to the new Terms, you must stop accessing or using the
Interface.

6. Accessing the Interface and Prohibited Activities

6.1 Your access to and use of the Interface is subject to these Terms and all applicable laws and regulations.
You may not, either directly or through a third party:

(a) Access or use the Interface if you are not fully able and legally competent to agree to these Terms;

(b) Modify, adapt, translate, reverse engineer, disassemble, decompile or create any derivative works
based on the Interface, including any files, tables or documentation (or any portion thereof);

(c) Distribute, license, transfer, reproduce, duplicate, copy, sell or resell, in whole or in part, any of the
Interface or any derivative works thereof except as authorized by these Terms;

(d) Market, rent or lease the Interface for a fee or charge, or use the Interface to advertise or perform any
commercial solicitation;

(e) Interfere with or attempt to interfere with the proper working of the Interface, disrupt the Interface or
any networks connected to the Interface, or bypass any measures we may use to prevent or restrict
access to the Interface;

(f) Incorporate the Interface or any portion thereof into any other program or product. In such case, we
reserve the right to refuse service, terminate accounts or limit access to the Interface in our sole
discretion;

(g) Use automated scripts to collect information from or otherwise interact with the Interface; or

(h) Impersonate any person or entity, or falsely state or otherwise misrepresent you or your affiliation with
any person or entity.

6.2 We reserve the right, at any time and without prior notice, to remove or disable access to content at our
discretion for any reason or no reason.

6.3 You further agree that you will not use the Interface to perform any type of illegal activity of any sort or
take any action that negatively affects the performance of the Interface. You may not engage in any of the
following activities, either directly or through a third party:

(a) attempt to gain unauthorized access to the Interface or another user’s account; or

(b) Engage in any activity that is abusive or interferes with or disrupts the Interface. Use of the Interface
in connection with any activity involving illegal products or services is prohibited.

6.4 We may suspend your access to the Interface in the event of any breach of these Terms.

6.5 By using the Interface you represent and warrant that you:

(a) Do not reside;

(b) Are not located;

(c) Do not have a place of business; and

(d) Are not conducting any business, (any of which makes you a “Resident”) in any jurisdiction in which
your use of the Interface is prohibited by any applicable statutes, laws (including common law),
ordinances, rules, regulations, codes, orders (including any temporary, preliminary or permanent order,
judgment, injunction, decree, ruling or other similar event or action), or government or regulatory agency
orders or guidance (collectively, “Laws”) or where under such Laws the operator of the Interface would
be required to be registered or licensed, to seek any consent or approval, or to make any filing with
respect to your use of the Interface.

6.6 By using the Interface you represent and warrant that you are not a Resident of any state or country:

(a) That requires entities engaged in token sales or token offerings to be registered or licensed; or

(b) Where the sale or purchase of the tokens pursuant to the Terms would be unlawful.

6.7 By using the Interface you represent and warrant that you are not a Resident of the United States or a
“U.S. person” within the meaning of Rule 902(k) under the United States Securities Act of 1933 (the
“Securities Act”).

7. Intellectual Property Rights

7.1 The Interface, including its “look and feel” (e.g., text, graphics, images, logos, page headers, button
icons, and scripts), proprietary content, information and other materials, and all content and other materials
contained therein, including, without limitation, all designs, text, graphics, pictures, data, software, sound
files, other files, and the selection and arrangement thereof are the proprietary property of the Company or
our affiliates or licensors.

7.2 The Company’s name, logo, trademarks, and any Company product or service names, designs, logos,
and slogans are the intellectual property of the Company or our affiliates or licensors and may not be copied,
imitated or used, in whole or in part, without our prior written permission in each instance. You may not use
any metatags or other “hidden text” utilizing the Company’s name or any other name, trademark or product
or service name of the Company or our affiliates or licensors without our prior written permission.

7.3 We respect intellectual property rights and ask you to do the same. As a condition of your access to and
use of the Interface, you agree not to use the Interface to infringe on any intellectual property rights. We
reserve the right, with or without notice, at any time and in our sole discretion to block access to any user
who infringes or is alleged to infringe any copyrights or other intellectual property rights.

8. Indemnity

8.1 You agree to defend, indemnify, and hold harmless the Company, its parents, subsidiaries, and affiliates,
and each of their respective officers, directors, employees, agents and advisors from any and all claims,
liabilities, costs, and expenses, including, but not limited to, attorneys’ fees and expenses, arising out of a
breach by you of these Terms or arising out of a breach of your obligations, representations and warranties
under these Terms.

9. Exclusion of Warranties

9.1 Nothing in these Terms shall affect any statutory rights that you cannot contractually agree to, alter or
waive and are legally always entitled to as a user.

9.2 The Interface is provided “as-is” and we make no warranty or representation to you with respect to them.
In particular we do not represent or warrant to you that:

(a) your use of the Interface will meet your requirements;

(b) your use of the Interface will be uninterrupted, timely, secure or free from error;

(c) any information obtained by you as a result of your use of the Interface will be accurate or reliable;
and

(d) defects in the operation or functionality of any software provided to you as part of the Interface will be
corrected

9.3 No conditions, warranties or other terms (including any implied terms as to satisfactory quality, fitness for
purpose or conformance with description) apply to the Interface except to the extent that they are expressly
set out in the Terms. We may change, suspend, withdraw or restrict the availability of all or any part of our
platform for business and operational reasons at any time without notice.

10. Limitation of Our Liability

10.1 Nothing in these Terms shall exclude or limit our liability for losses which may not be lawfully excluded
or limited by applicable law. This includes liability for death or personal injury caused by our negligence or
the negligence of our employees, agents or subcontractors and for fraud or fraudulent misrepresentation.

10.2 Subject to paragraph 10.1, we shall not be liable to you for any:

(a) loss of:

(i) profit;

(ii) goodwill;

(iii) opportunity; or

(iv) data suffered by you, (in each case whether direct or indirect);

(b) indirect or consequential losses which may be incurred by you; or

(c) loss or damage which may be incurred by you as a result of:

(i) any reliance placed by you on the completeness, accuracy or existence of any advertising;

(ii) any changes which we may make to the Interface, or for any permanent or temporary cessation in
the provision of the Interface (or any features within the Interface);

(iii) the deletion of, corruption of, or failure to store, any content and other communications data
maintained or transmitted by or through your use of the Interface; or

(iv) your failure to provide us with accurate account information.

10.3 Subject to paragraphs 10.1 and 10.2, our total aggregate liability to you, whether based on an action or
claim in contract, tort (including negligence), breach of statutory duty or otherwise arising out of, or in relation
to, these Terms, the Interface or service, will be limited to USD 50.00.

10.4 Unless you notify us that you intend to make a claim in respect of an event within the notice period, we
shall have no liability for that event. The notice period for an event shall start on the day on which you
became, or ought reasonably to have become, aware of your grounds to make a claim in respect of the
event and shall expire six (6) months from that date. The notice must be in writing and must identify the
event and the grounds for the claim in reasonable detail.

11. Anti-Money Laundering, Economic Sanctions, Anti-Bribery and Anti-Boycott Representations

11.1 You represent and warrant that neither you, nor any of your directors, officers, or to the best of your
knowledge and belief, your employees, affiliates or associates or anyone acting on your behalf (as
applicable) is:

(a) the subject or target of any economic or financial sanctions, trade embargoes or export controls
administered, enacted or enforced from time to time by the United States of America (“U.S.”) (including
those administered by the U.S. Treasury Department’s Office of Foreign Assets Control or the U.S.
Department of State), the United Nations Security Council, the European Union (“EU”), any EU member
state, the United Kingdom or any jurisdiction in which you operate (collectively “Sanctions”);

(b) organised, operating from, incorporated or resident in a country or territory which is the subject or
target of comprehensive export, import, financial or investment embargoes under any Sanctions (which,
as of the date of these Terms are Cuba, Iran, North Korea, the Crimea region of Ukraine, Syria, the so-
called Donetsk People’s Republic or the so-called Luhansk People’s Republic); or

(c) is a senior political figure or any immediate family member or close associate of a senior political
figure.

11.2 For the purposes of this paragraph 11.1:

(a) a “senior political figure” is a senior official in the executive, legislative, administrative, military or
judicial branches of a government (whether elected or not), a senior official of a major political party, or a
senior executive of a government-owned corporation. In addition, a “senior political figure” includes any
corporation, business or other entity that has been formed by, or for the benefit of, a senior political
figure;

(b) an “immediate family member” of a senior political figure are such person’s parents, siblings, spouse,
civil partner, children, step-children and in-laws; and

(c) a “close associate” of a senior political figure is a person who is widely and publicly known to
maintain an unusually close relationship with the senior political figure, and includes a person who is in
a position to conduct substantial financial transactions on behalf of the senior political figure.

12. General

12.1 Security

(a) We do not guarantee that the Interface will be secure or free from bugs or viruses. You are
responsible for configuring your information technology, computer programmes and platform in order to
access the Interface. You should use your own virus protection software.

(b) You must not misuse the Interface by knowingly introducing viruses, Trojans, worms, logic bombs or
other material which is malicious or technologically harmful. You must not attempt to gain unauthorised
access to the Interface, the server on which the Interface is stored or any server, computer or database
connected to the Interface. You must not attack the Interface via a denial-of-service attack or a distributed
denial-of-service attack. By breaching this provision, you acknowledge that you commit a criminal
offence under the Computer Misuse Act 1990 (as amended, extended or re-enacted from time to time).
We will report any such breach to the relevant law enforcement authorities and we will co-operate with
those authorities by disclosing your identity to them. In the event of such a breach, your right to use the
Interface will cease immediately.

12.2 Linking To Our Website

(a) You may link to our home page, provided you do so in a way that is fair and legal and does not
damage our reputation or take advantage of it. You must not establish a link in such a way as to suggest
any form of association, approval or endorsement on our part where none exists.

(b) You must not establish a link to our Website in any website that is not owned by you. Our Website
must not be framed on any other website, nor may you create a link to any part of our Website other than
the home page.

(c) We reserve the right to withdraw linking permission without notice. If you wish to make any use of
content on our Website other than that set out above, please contact: info@euler.foundation.

12.3 Third Party Links

(a) Where the Interface contains links to other websites and resources provided by third parties, these
links are provided for your information only. We have no control over the contents of those websites or
resources.

12.4 Applicable Law and Jurisdiction

(a) These Terms, its subject matter and its formation (and any non-contractual disputes or claims arising
out of or in connection with the Terms) are governed by laws of the British Virgin Islands.

(b) Any dispute, controversy, difference or claim arising out of or relating to these Terms, including the
existence, validity, interpretation, performance, breach or termination thereof or any dispute regarding
non-contractual obligations arising out of or relating to it shall be finally resolved by arbitration under the
Arbitration Rules of the LCIA (the “Rules”), which are deemed to be incorporated by reference into this
paragraph (save that any requirement in the Rules to take account of the nationality of a person
considered for appointment as an arbitrator shall be disapplied and a person may be nominated or
appointed as an arbitrator (including as chairman) regardless of nationality). There shall be three
arbitrators, two of whom shall be nominated by the Company and you in accordance with the Rules and
the third, who shall be the Chairman of the tribunal, shall be nominated by the two-nominated arbitrators
within fourteen (14) days of the last of their appointments. The seat, or legal place, of arbitration shall be
London, England. The language to be used in the arbitral proceedings shall be English. Judgment on
any award may be entered in any court having jurisdiction thereover.

12.5 Entire Agreement

(a) These Terms constitute the whole legal agreement between you and the Company and govern your
use of the Interface and completely replace any prior agreements between you and the Company in
relation to the Interface.

12.6 No Waiver

(a) Our failure to insist upon or enforce any provision of these Terms shall not be construed as a waiver
of any provision or right.

12.7 Severability

(a) If any court of law, having jurisdiction to decide on this matter, rules that any provision of these Terms
is invalid, then that provision will be removed from the Terms without affecting the rest of the Terms, and
the remaining provisions of the Terms will continue to be valid and enforceable.

Contact Us

To contact us, please email .contact@euler.foundation

Last updated on: 06-June-2022

Effective date: 06-June-2022

mailto:contact@euler.foundation

Privacy Policy

Privacy Policy

This Privacy Policy describes the policies of The Euler Foundation, 4th Floor, Harbour Place, 103 South
Church Street, P.O. Box 10240, Grand Cayman KY1-1002, George Town, Cayman Islands on the collection,
use and disclosure of your information that we collect when you use our website (or

) (the “Service”). By accessing or using the Service, you are consenting to the collection,
use and disclosure of your information in accordance with this Privacy Policy. If you do not consent to the
same, please do not access or use the Service.

euler.finance
app.euler.finance

We may modify this Privacy Policy at any time without any prior notice to you and will post the revised
Privacy Policy on the Service. The revised Policy will be effective 180 days from when the revised Policy is
posted in the Service and your continued access or use of the Service after such time will constitute your
acceptance of the revised Privacy Policy. We therefore recommend that you periodically review this page.

How We Use Your Information

We will use the information that we collect about you for the following purposes:

Marketing/ Promotional

Customer feedback collection

Support

If we want to use your information for any other purpose, we will ask you for consent and will use your
information only on receiving your consent and then, only for the purpose(s) for which grant consent unless
we are required to do otherwise by law.

How We Share Your Information

We will not transfer your personal information to any third party without seeking your consent, except in
limited circumstances as described below:

Analytics

Data collection & process

We require such third party’s to use the personal information we transfer to them only for the purpose for
which it was transferred and not to retain it for longer than is required for fulfilling the said purpose.

We may also disclose your personal information for the following: (1) to comply with applicable law,
regulation, court order or other legal process; (2) to enforce your agreements with us, including this Privacy
Policy; or (3) to respond to claims that your use of the Service violates any third-party rights. If the Service or
our company is merged or acquired with another company, your information will be one of the assets that is
transferred to the new owner.

https://www.euler.finance/
https://app.euler.finance/

Your Rights

Depending on the law that applies, you may have a right to access and rectify or erase your personal data or
receive a copy of your personal data, restrict or object to the active processing of your data, ask us to share
(port) your personal information to another entity, withdraw any consent you provided to us to process your
data, a right to lodge a complaint with a statutory authority and such other rights as may be relevant under
applicable laws. To exercise these rights, you can write to us at . We will respond
to your request in accordance with applicable law.

contact@euler.foundation

You may opt-out of direct marketing communications or the profiling we carry out for marketing purposes by
writing to us at [contact@euler.foundation(mailto:contact@euler.foundation).

Do note that if you do not allow us to collect or process the required personal information or withdraw the
consent to process the same for the required purposes, you may not be able to access or use the services
for which your information was sought.

Cookies

We do not use cookies.

Security

The security of your information is important to us and we will use reasonable security measures to prevent
the loss, misuse or unauthorized alteration of your information under our control. However, given the
inherent risks, we cannot guarantee absolute security and consequently, we cannot ensure or warrant the
security of any information you transmit to us and you do so at your own risk.

Grievance

If you have any queries or concerns about the processing of your information that is available with us, you
may email us at and we will address your concerns in accordance with applicable
law.

contact@euler.foundation

Last updated on: 06-June-2022

Effective date: 06-June-2022

mailto:contact@euler.foundation
mailto:contact@euler.foundation

